scholarly journals A Multi-Response Optimization for Isomerization of light Naphtha

Isomerization process is considered one of the main processes used to produce high octane rating gasoline with improved environmental conditions and less emissions. The main keys of performance in isomerization units are the product yield, paraffin isomerization number (PIN) and octane number (RON). In this article we present a multi-response optimization strategy for an industrial naphtha continuous isomerization-process that aims to maximize RON, PIN and yield. Data of 53-runs including feed compositions as well as operating conditions; reactor temperature, benzene content, liquid hour space velocity, feed PIN, hydrogen to hydrocarbon ratio, feed octane number, C7+ content, inlet reactor temperature and iC5/C5P ratio are collected from a refinery company over a period of two months to test the effect of each variable and their interaction over each response individually using analysis of variance (ANOVA). Model reduction is applied for the three models in order to exclude any insignificant data and improve the model’s accuracy. Finally, the optimum operating conditions for the process are selected using numerical optimization in Design Expert 11 by comparing with the real industrial data runs to give the maximum yield, PIN and RON which are 99.992, 122 and 86 respectively. Benzene content is selected to be 1.807 wt%, reactor temperature;143oC, LHSV; 0.882 h-1 , feed PIN; 64.611, H2 /HC; 0.07, feed RON; 74.408, C7+; 4.06 wt%, inlet reactor temperature; 116oC and iC5/C5P ratio 45.768.

2010 ◽  
Vol 93 (2) ◽  
pp. 694-702 ◽  
Author(s):  
Nida Fatima Kolachi ◽  
Tasneem Gul Kazi ◽  
Jameel Ahmed Baig ◽  
Ghulam Abbas Kandhro ◽  
Sumaira Khan ◽  
...  

Abstract A simple and rapid microwave-assisted extraction (MAE) of selenium (Se) from medicinal plants was investigated using different concentrations of nitric acid and hydrochloric acid, sample mass, heating time, microwave energy, and plant particle size. The optimization strategy was carried out using multivariate methodologies. Electrothermal atomic absorption spectrometry was used to determine Se. The accuracy of the optimized procedure was evaluated by using certified reference materials with certified values for Se and a microwave-assisted acid digestion (MD) method for comparative purpose. No significant difference was observed (P > 0.05) when comparing the values obtained by the proposed MAE and MD methods (paired t-test). Under the optimum operating conditions, the LOD obtained from the standard calibration curve was 0.012 g/L for Se. The average RSD of the MAE method varied between 4.05 and 7.53 (n 6). The proposed method was successfully applied for the determination of Se in medicinal plants used as remedies for cancerous and infection diseases.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 165-171 ◽  
Author(s):  
D.-H. Kim ◽  
E. Choi ◽  
Z. Yun ◽  
S.-W. Kim

Aerobic degradation of high strength piggery waste elevated the reactor temperature inhibiting nitrification. This study included anaerobic pretreatment with various influent by-pass rates to control the temperature and to minimize the external carbon requirement for denitrification. To find the optimum operating conditions, both lab-scale AnSBR (anaerobic sequencing batch reactor) and Ax/Ox (anoxic/oxic) SBR were operated at 35°C. The heat energy released from Ax/Ox SBR was assumed to be used for heating the AnSBR, with which the Ax/Ox reactor temperature could successfully be controlled below 40°C. The optimum rates of by-pass were 1.0 for winter, 0.4 for spring/fall and 0.2Ð0.4 for summer, respectively. Applying the correction factors for the measured AUR2 (nitrite nitrification rate) and AUR (nitrate nitrification) at the predicted temperatures, the required oxic HRTs were computed. The required Ax/Ox HRT ratios were respectively 0.5 for COD/TKN>8, 1.0 for COD/TKN ratio of 5.5-8 and 3.5 for below 5.5. The optimum HRTs were 16 days for AnSBR and 17 days for Ax/Ox SBR with the corrected AUR2.


2020 ◽  
Vol 10 (10) ◽  
pp. 3566
Author(s):  
Mary Angélica Ferreira Vela ◽  
Juan C. Acevedo-Páez ◽  
Nestor Urbina-Suárez ◽  
Yeily Adriana Rangel Basto ◽  
Ángel Darío González-Delgado

The search for innovation and biotechnological strategies in the biodiesel production chain have become a topic of interest for scientific community owing the importance of renewable energy sources. This work aimed to implement an enzymatic transesterification process to obtain biodiesel from waste frying oil (WFO). The transesterification was performed by varying reaction times (8 h, 12 h and 16 h), enzyme concentrations of lipase XX 25 split (14%, 16% and 18%), pH of reaction media (6, 7 and 8) and reaction temperature (35, 38 and 40 °C) with a fixed alcohol–oil molar ratio of 3:1. The optimum operating conditions were selected to quantify the amount of fatty acid methyl esters (FAMEs) generated. The highest biodiesel production was reached with an enzyme concentration of 14%, reaction time of 8 h, pH of 7 and temperature of 38 °C. It was estimated a FAMEs production of 42.86% for the selected experiment; however, best physicochemical characteristics of biodiesel were achieved with an enzyme concentration of 16% and reaction time of 8 h. Results suggested that enzymatic transesterification process was favorable because the amount of methyl esters obtained was similar to the content of fatty acids in the WFO.


The Analyst ◽  
1999 ◽  
Vol 124 (5) ◽  
pp. 713-719 ◽  
Author(s):  
R. P. W. Scott ◽  
Thomas E. Beesley

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Amir Rahimi ◽  
Sogand Hamidi

In this study, the performance of a fixed–bed tubular reactor for the production of phthalic anhydride is mathematically analyzed. The conversion degree and reactor temperature values are compared with the measured one in a tubular reactor applied in Farabi petrochemical unit in Iran as well as reported data in the literature for a pilot plate. The comparisons are satisfactory. The effects of some operating parameters including reactor length, feed temperature, reactor pressure, and existence of an inert in the catalytic bed are investigated. The optimum value of each parameter is determined on the basis of the corresponding operating conditions.


1988 ◽  
Vol 110 (4) ◽  
pp. 472-481 ◽  
Author(s):  
D. C. Sun

A model of the metal V-belt drive (MBD), considering its detailed multiple-band and metal-block structure, and the ratio-change effect during its operation, is constructed and analyzed. A computational scheme is devised that adapts the analysis to the computation of the MBD’s performance for any specified drive-schedule. General performance characteristics of the MBD and an example illustrating its response to a given drive-schedule are presented. The use of the analysis and the computational scheme in the design of the MBD and in finding the optimum operating conditions is discussed.


2003 ◽  
Vol 38 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Soufiane Tahiri ◽  
Ali Messaoudi ◽  
Abderrahman Albizane ◽  
Mohamed Azzi ◽  
Mohamed Bouhria ◽  
...  

Abstract In this work, the ability of chrome shavings and of crust leather buffing dusts to remove dyes from aqueous solutions has been studied. Buffing dusts proved to be a much better adsorbent than chrome shavings for cationic dyes. The adsorption of anionic dyes is very important on two studied wastes. The pH has an obvious influence on the adsorption of dyes. Adsorption of cationic dyes is less favourable under acidic conditions (pH <3.5) and at high pH values (pH >10.5). The adsorption of anionic dyes on both adsorbents is more favourable under acidic conditions (pH <3). The adsorption on chrome shavings is improved by the use of finer particles. The kinetic adsorption was also studied. Adsorption isotherms, at the optimum operating conditions, were determined. Adsorption follows the Langmuir model. The isotherm parameters have been calculated. The column technique could be applied to treat significant volumes of solutions.


2018 ◽  
Vol 156 ◽  
pp. 01018 ◽  
Author(s):  
Siswo Sumardiono ◽  
Bakti Jos ◽  
Denny Firmansyah ◽  
Rahmi Hidayatunajah ◽  
Isti Pudjihastuti

Food security should be supported in an effort to utilize local products into import substitution products. Cassava starch has the potential to be developed into semi-finished products in the form of flour or starch which does not contain gluten but can inflate large baking process, potentially as a substitute for wheat flour-the main ingredient for making bread. The characteristic of the starch is influenced by the type of starch composition and structure. Natural starch has physicochemical properties i.e. a long time cooking and pasta formed hard. These constraints allow us to modify cassava starch by a combination of lactic acid hydrolysis and drying with rotary UV system. Modified cassava starch is expected to be used as a substitute for wheat flour. The aim of the research which is a combination of lactic acid hydrolysis and drying using a rotary UV system is to examine the optimum operating conditions in the drying process of starch hydrolysis with parameter the physicochemical and rheological properties of modified cassava starch. The initial process study is to hydrolyze cassava starch using lactic acid. Furthermore, hydrolyzed cassava starch is then dried using UV light in the rotary dryers system. There are a variety of changing variables, i.e. time of irradiation cassava starch-lactic acid hydrolysis products in the rotary UV light and air drying temperature. The research results show that modified starch has a better characteristic than the natural starch. From the analysis, the best point of swelling power, solubility and baking expansion is consequently 15.62 g/g; 24.19 %; 2.21 ml/gr. The FTIR result shows that there is no significant difference of the chemical structure because the starch modification only change the physical characteristics. From the SEM analysis, we can know that the size of the starch’s granule changes between the natural starch and the modified starch..


Sign in / Sign up

Export Citation Format

Share Document