scholarly journals Cost-Effective Access Based Android System of Mobile Application for Blind Person

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1155-1157

nowadays, savvy purchasing in current shopping center stores that supply exclusive items is an fantastic check for humans with visual disabilities. A evidence-of-idea wearable framework imagined to help outwardly weakened clients with finding racked objects. the broadcast content cloth, as an example, scanner tag indicates up all around the vicinity. along the ones lines, dazzle individuals need a few help to peruse this standardized identification at the same time as goes out on the town to preserve. This paper suggests a digital camera-based totally definitely object facts peruser to assist daze people to peruse statistics about the gadgets thru the scanner tag. The virtual digital camera is going about as a primary imaginative and prescient in spotting the standardized identity of the items then the scanner tag will be organized inner to get the object statistics via manner of utilising ECLIPSETM programming by the usage of unfastened programming equipment PhpMyAdmin eventually distinguishes the object name, cost and brand. The identified item statistics is articulated via the content material todiscourse innovation (TTS). The TTS are utilized to change over the content into discourse regions with the aid of utilising voice yield. Its plan does no longer require any device instrumentation of the store and turns on low set up order and protection costs

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 661
Author(s):  
Luigi Piazzi ◽  
Stefano Acunto ◽  
Francesca Frau ◽  
Fabrizio Atzori ◽  
Maria Francesca Cinti ◽  
...  

Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Peio Ziarsolo ◽  
Tomas Hasing ◽  
Rebeca Hilario ◽  
Victor Garcia-Carpintero ◽  
Jose Blanca ◽  
...  

Abstract Background K-seq, a new genotyping methodology based on the amplification of genomic regions using two steps of Klenow amplification with short oligonucleotides, followed by standard PCR and Illumina sequencing, is presented. The protocol was accompanied by software developed to aid with primer set design. Results As the first examples, K-seq in species as diverse as tomato, dog and wheat was developed. K-seq provided genetic distances similar to those based on WGS in dogs. Experiments comparing K-seq and GBS in tomato showed similar genetic results, although K-seq had the advantage of finding more SNPs for the same number of Illumina reads. The technology reproducibility was tested with two independent runs of the tomato samples, and the correlation coefficient of the SNP coverages between samples was 0.8 and the genotype match was above 94%. K-seq also proved to be useful in polyploid species. The wheat samples generated specific markers for all subgenomes, and the SNPs generated from the diploid ancestors were located in the expected subgenome with accuracies greater than 80%. Conclusion K-seq is an open, patent-unencumbered, easy-to-set-up, cost-effective and reliable technology ready to be used by any molecular biology laboratory without special equipment in many genetic studies.


2021 ◽  
Vol 13 (9) ◽  
pp. 4651
Author(s):  
Ming-Lun Alan Fong

The analysis of ventilation strategies is fundamentally affected by regional climate conditions and local cost databases, in terms of energy consumption, CO2 emission and cost-effective analysis. A systematic approach is covered in this paper to estimate a local economic and environmental impact on a medium-sized space located in two regions during supply-and-installation and operation phases. Three ventilation strategies, including mixing ventilation (MV), displacement ventilation (DV) and stratum ventilation (SV) were applied to medium-sized air-conditioned space with this approach. The trend of the results for three ventilation systems in the life cycle assessment (LCA) and life cycle cost (LCC) analysis is SV < DV < MV. The result of CO2 emission and regional LCC shows that SV is the lowest one in both regional studies. In comparison with the Hong Kong Special Administrative Region (HKSAR) during 20 Service years, the case analysis demonstrates that the percentage differences in LCC analysis of MV, DV & SV in Guangdong are less than 20.5%, 19.4% and 18.82% respectively. Their CO2 emission of MV, DV and SV in Guangdong are more than HKSAR in 10.69%, 11.22% and 12.05%, respectively. The present study could provide information about regional effects in the LCA and LCC analysis of three ventilation strategies emissions, and thereby help set up models for decision-making on high efficiency and cost-effective ventilation strategy plans.


2001 ◽  
Vol 35 (4) ◽  
pp. 33-45 ◽  
Author(s):  
Peter Hogarth

Between 23rd and 25th July 2001 GeoSwath, a high specification shallow water wide swath bathymetry system, was used to survey the entire Portsmouth NH Harbor area. This paper deals with the results of this survey, illustrating the potential for significant reductions in the high costs, which have prevented widespread proliferation of Swath Bathymetry systems to date. Data, including a complete DTM gridded to 1 m resolution, will be presented and discussed in detail. These results show that the system is very easy to set up and use, requires greatly reduced boat and processing time, whilst offering high accuracy and very high coverage and resolution when used in a real-world survey of a dynamic harbor environment.


Author(s):  
Anmol Arora ◽  
Andrew Wright ◽  
Mark Cheng ◽  
Zahra Khwaja ◽  
Matthew Seah

AbstractHealthcare as an industry is recognised as one of the most innovative. Despite heavy regulation, there is substantial scope for new technologies and care models to not only boost patient outcomes but to do so at reduced cost to healthcare systems and consumers. Promoting innovation within national health systems such as the National Health Service (NHS) in the United Kingdom (UK) has been set as a key target for health care professionals and policy makers. However, while the UK has a world-class biomedical research industry, several reports in the last twenty years have highlighted the difficulties faced by the NHS in encouraging and adopting innovations, with the journey from idea to implementation of health technology often taking years and being very expensive, with a high failure rate. This has led to the establishment of several innovation pathways within and around the NHS, to encourage the invention, development and implementation of cost-effective technologies that improve health care delivery. These pathways span local, regional and national health infrastructure. They operate at different stages of the innovation pipeline, with their scope and work defined by location, technology area or industry sector, based on the specific problem identified when they were set up. In this introductory review, we outline each of the major innovation pathways operating at local, regional and national levels across the NHS, including their history, governance, operating procedures and areas of expertise. The extent to which innovation pathways address current challenges faced by innovators is discussed, as well as areas for improvement and future study.


COVID ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 717-727
Author(s):  
Parastoo Kheiroddin ◽  
Magdalena Gründl ◽  
Michael Althammer ◽  
Patricia Schöberl ◽  
Linda Plail ◽  
...  

(1) Background: With vaccination and new variants of SARS-CoV-2 on the horizon, efficient testing in schools may enable prevention of mass infection outbreaks, keeping schools safe places and buying time until decisions on feasibility and the necessity of vaccination in children and youth are made. We established, in the course of the WICOVIR (Where Is the COrona VIRus) study, that gargle-based pool-PCR testing offers a feasible, efficient, and safe testing system for schools in Germany when applied by central university laboratories. (2) Objectives: We evaluated whether this approach can be implemented in different rural and urban settings. (3) Methods: We assessed the arrangements required for successful implementation of the WICOVIR approach in a variety of settings in terms of transport logistics, data transfer and pre-existing laboratory set-up, as well as the time required to establish the set-up. (4) Results: We found that once regulatory issues have been overcome, all challenges pertaining to logistics, data transfer, and laboratory testing on different platforms can be solved within one month. Pooling and depooling of samples down to the individual test result were achievable within one working day in all settings. Local involvement of the community and decentralized set-ups were keys for success. (5) Conclusion: The WICOVIR gargle-based pool-PCR system is so robust and simple that it can be implemented within one month in all settings now or in future pandemics.


Author(s):  
Anju Gupta ◽  
R K Bathla

With so many people now wearing mobile devices with sensors (such as smartphones), utilizing the immense capabilities of these business mobility goods has become a prospective skill to significant behavioural and ecological sensors. A potential challenge for pervasive context assessment is opportunistic sensing, has been effectively used to a wide range of applications. The sensor cloud combines cloud technology with a wireless sensor, resulting in a scalable and cost-effective computing platform for real-time applications. Because the sensor's battery power is limited and the data centre’s servers consume a significant amount of energy to supply storage, a sensor cloud must be energy efficient. This study provides a Fog-based semantic for enabling these kinds of technologies quickly and successfully. The suggested structure is comprised of fundamental algorithms to help set up and coordinate the fog sensing jobs. It creates effective multihop routes for coordinating relevant devices and transporting acquired sensory data to fog sinks. It was claimed that energy-efficient sensor cloud approaches were categorized into different groups and that each technology was examined using numerous characteristics. The outcomes of a series of thorough test simulation in NS3 to define the practicality of the created console, as well as the proportion of each parameter utilized for each technology, are computed.


2018 ◽  
Vol 2 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Nareena Soomro ◽  
Safeeullah Soomro

Since autistic children suffers from learning disabilities and communication barriers, this research aim to design, develop and evaluate an Android based mobile application (app) providing better learning environment with inclusion of graphical representation in a cost effective manner. This research evaluate various supporting technologies and finds Picture Exchange Communication System (PECS) to be better choice for integrating with the app. Evaluation results reveal that the inclusion of PECS helped the children suffering from Autistic Spectrum Disorder (ASD) to better communicate with others. The study included autistic children who do not speak, who are unintelligible and who are minimally effective communicators with their present communication system. The evolution results showed encouraging impacts of the Autism App in supporting autistic children to adapt to normal life and improve the standard of their life.


Author(s):  
Shushank Sharma

The oral route is the most convenient route of administration for various drugs. It is viewed as the most convenient, most secure, and economical route for patients. Fast disintegrating tablets are popular these days as they disintegrate in the mouth within a few seconds without the use of water. The burdens of regularly used medications in pediatric and geriatric patients have been overwhelmed by quick-dissolving tablets. Natural superdisintegrants have been used for fast-dissolving tablets because they are biodegradable, chemically inert, non-harmful, more affordable, and generally accessible. Natural polymer improves the properties of the tablet as it is commonly used as diluents and binders. Natural super disintegrants decrease the release time and give healthful results to the patients. Most polymers are obtained from nature, they are cost-effective, non-toxic, and non-irritants. Disintegration is the most important step for releasing the drug from the tablet matrix to decrease the disintegration time. In this, drug and polymers come in contact with water, it swells, hydrate, and react chemically to release the drug in the mouth and gastrointestinal tract. Superdisintegrants are those substances that encourage the quick breaking down with a lesser amount contrasted with disintegrants. The quick disintegrants tablets are set up by utilizing suitable polymers which rely on the Physico-chemical properties of drugs and excipients, for example, drug and polymer compatibility, hardness and thickness of tablet, nature of drug and excipients, PH of drug and release parameters of drug formulation. Superdisintegrants are the vehicles added to tablet formulation to advance the breaking of tablets and capsules into small microparticles in aqueous media resulting in to increase in the surface area and promote quick drug release. The disintegrants have a significant capacity to oppose the efficacy of tablet binders and compression forces to form the tablet. Commonly there are three methods to incorporate disintegrants into the tablet: A. Inner addition, B. External expansion, C. Internal, and external addition. Most of the regularly based tablets are those expected to be swallow, disintegrate and release medicaments in the gastrointestinal tract but over a while tablets are manufactured to deliver medicaments in the mouth and gastrointestinal tract within few seconds of swallowing. It has been demonstrated that characteristic polymers are more effective than synthetic polymers. Some research is going to develop safe and effective medication with super disintegrating agents that can be dissolved rapidly to treat the disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rowan W. Sanderson ◽  
Qi Fang ◽  
Andrea Curatolo ◽  
Wayne Adams ◽  
Devina D. Lakhiani ◽  
...  

Abstract Optical elastography is undergoing extensive development as an imaging tool to map mechanical contrast in tissue. Here, we present a new platform for optical elastography by generating sub-millimetre-scale mechanical contrast from a simple digital camera. This cost-effective, compact and easy-to-implement approach opens the possibility to greatly expand applications of optical elastography both within and beyond the field of medical imaging. Camera-based optical palpation (CBOP) utilises a digital camera to acquire photographs that quantify the light intensity transmitted through a silicone layer comprising a dense distribution of micro-pores (diameter, 30–100 µm). As the transmission of light through the micro-pores increases with compression, we deduce strain in the layer directly from intensity in the digital photograph. By pre-characterising the relationship between stress and strain of the layer, the measured strain map can be converted to an optical palpogram, a map of stress that visualises mechanical contrast in the sample. We demonstrate a spatial resolution as high as 290 µm in CBOP, comparable to that achieved using an optical coherence tomography-based implementation of optical palpation. In this paper, we describe the fabrication of the micro-porous layer and present experimental results from structured phantoms containing stiff inclusions as small as 0.5 × 0.5 × 1 mm. In each case, we demonstrate high contrast between the inclusion and the base material and validate both the contrast and spatial resolution achieved using finite element modelling. By performing CBOP on freshly excised human breast tissue, we demonstrate the capability to delineate tumour from surrounding benign tissue.


Sign in / Sign up

Export Citation Format

Share Document