scholarly journals Automatic Liquid Control System for Overhead Storage Tank in Households

2019 ◽  
Vol 8 (3) ◽  
pp. 2061-2063

The scarcity of drinking water in near future attracts the attention of the researcher how to control the use of water as per the need. Now this is a major global problem rising in front of all to avoid the crisis of fresh water. Hence, it is not only extremely crucial to preserve and save water but also to reduce the unnecessary use of water. Especially, in many houses in India, there is unnecessary wastage of water due to unnoticed water leakage from faucets and overflow in overhead storage tanks. This is where automatic liquid control system comes into picture. The operation of liquid control system is based upon the fact that liquid primarily water acts as a hindrance for sound waves emitting from the ultrasonic sensor. Rise and fall of water level results in triggering on and off switch which further enables or disables the motor pump as per the requirement. This paper has achieved its primary objective i.e. noncontact liquid monitoring system employing Arduino Uno

2019 ◽  
Vol 4 (1) ◽  
pp. 55-64
Author(s):  
Hafizt Azzari Aldaf ◽  
Indyah Hartami Santi ◽  
Yusniarsi Primasari

Nowdays, The development of water dispensers has hot and cold water technology, but fills water into cold and hot water storage tanks by lifting and putting the gallons on top of the dispenser so that water can flow into hot and cold water storage tanks, this is assessed less efficient. The purpose of making this tool is to make it easier for users to install gallons without having to lift the gallon and put it on top of the reservoir, it can also facilitate the taking of drinking water without having to press or open the faucet first. Because in modern era, the need for tools that work automatically and efficiently are increasing. The results of this study indicate that automatic water and faucet filler devices in dispensers using ultrasonic sensors as a whole work well and are in accordance with the function specified. The function of the ultrasonic sensor is as a reader the maximum limit of water level in the reservoir, so that when the water is in its maximum state, the pump will stop filling the reservoir. And the ultrasonic sensor in front of the dispenser functions to read the glass, the sensor will detect and then be received by the microcontroller and continue to execute the relay and open the selenoid so that the water can come out.


2007 ◽  
Vol 5 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Jay P. Graham ◽  
James VanDerslice

Many communities along the US-México border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (>10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.


Author(s):  
Susumu Araki ◽  
Wataru Kunimatsu ◽  
Shunyo Kitaguchi ◽  
Shun Iwasaki ◽  
Shin-ichi Aoki

Storage tanks located in coastal areas can be damaged by tsunami. The damage can lead a spill of gas or oil, which cause an extensive fire. Another huge tsunami triggered by earthquake is predicted to strike Japan in the near future. Therefore, tsunami wave load acting on storage tanks has to be investigated. The authors have investigated the characteristics of tsunami wave load acting on a storage tank (Araki et al., 2017a; 2017b). In this study, bore wave pressure acting on a cylindrical storage tank was measured. The characteristic of the pressure was discussed.


2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 573
Author(s):  
Sameer Shadeed ◽  
Sandy Alawna

In highly water-poor areas, rooftop rainwater harvesting (RRWH) can be used for a self-sustaining and self-reliant domestic water supply. The designing of an optimal RRWH storage tank is a key parameter to implement a reliable RRWH system. In this study, the optimal size of RRWH storage tanks in the different West Bank governorates was estimated based on monthly (all governorates) and daily (i.e., Nablus) inflow (RRWH) and outflow (domestic water demand, DWD) data. In the estimation of RRWH, five rooftop areas varying between 100 m2 and 300 m2 were selected. Moreover, the reliability of the adopting RRWH system in the different West Bank governorates was tested. Two-time series scenarios were assumed: Scenario 1, S1 (12 months, annual) and scenario 2, S2 (8 months, rainy). As a result, reliable curves for preliminary estimation of optimal RRWH storage tanks for the different West Bank governorates were obtained. Results show that the required storage tank for S1 (annual) is more than that of the S2 (rainy) one. The required storage tank to fulfill DWD is based on the average rooftop area of 150 m2, the average family members of 4.8, and the average DWD of 90 L per capita per day (L/c/d) varies between (75 m3 to 136 m3) and (24 m3 to 84 m3) for S2 for the different West Bank governorates. Further, it is found that the optimal RRWH tank size for the 150 m2 rooftop ranges between 20 m3 (in Jericho) to 75 m3 (in Salfit and Nablus) and between 20 m3 (in Jericho) to 51 m3 (in Jerusalem) for S1 and S2 scenarios, respectively. Finally, results show that the implementation of an RRWH system for a rooftop area of 150 m2 and family members of 4.8 is reliable for all of the West Bank governorates except Jericho. Whereas, the reliability doesn’t exceed 19% for the two scenarios. However, the reduction of DWDv is highly affecting the reliability of adopting RRWH systems in Jericho (the least rainfall governorate). For instance, a family DWDv of 3.2 m3/month (25% of the average family DWDv in the West Bank) will increase the reliability at a rooftop area of 150 m2 to 51% and 76% for S1 and S2, respectively.


Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 37
Author(s):  
Przemysław Niziński ◽  
Patrycja Wiśniewska ◽  
Joanna Kończyk ◽  
Rajmund Michalski

Perchlorate ion (ClO4−) is known as a potent endocrine disruptor and exposure to this compound can result in serious health issues. It has been found in drinking water, swimming pools, and surface water in many countries, however, its occurrence in the environment is still poorly understood. The information on perchlorate contamination of Polish waters is very limited. The primary objective of this study was to assess ClO4− content in bottled, tap, river, and swimming pool water samples from different regions of Poland and provide some data on the presence of perchlorate. We have examined samples of bottled, river, municipal, and swimming pool water using the IC–CD (ion chromatography–conductivity detection) method. Limit of detection and limit of quantification were 0.43 µg/L and 1.42 µg/L, respectively, and they were both above the current health advisory levels in drinking water. The concentration of perchlorate were found to be 3.12 µg/L in one river water sample and from 6.38 to 8.14 µg/L in swimming pool water samples. Importantly, the level of perchlorate was below the limit of detection (LOD) in all bottled water samples. The results have shown that the determined perchlorate contamination in Polish drinking waters seems to be small, nevertheless, further studies are required on surface and river samples. The inexpensive, fast, and sensitive IC–CD method used in this study allowed for a reliable determination of perchlorate in the analyzed samples. To the best of our knowledge, there are no other studies seeking to assess the perchlorate content in Polish waters.


Sign in / Sign up

Export Citation Format

Share Document