scholarly journals Experimental Analysis of Solar Assisted Refrigerating Electric Vehicle

Author(s):  
Surender Kumar ◽  
R.S. Bharj

Most refrigerating systems are driven by an internal combustion engine that increased the conventional vehicle's oil consumption and tailpipe emissions. The solar-assisted refrigerating electric vehicle (SAREV) system powered by a hybrid energy mode has been designed. The hybrid energy (solar + grid) was stored in the battery bank to complete this vehicle's necessary functions. The PV panels are prominently incorporated into this vehicle rooftop to charge the battery bank. In this study, the integrated system was driven by a hybrid energy mode that reducing the wastage and deterioration during temporary storage and transportation in different areas. The performance of the integrated system was tested under different operating conditions. The effect of load variation on maximum speed and travelling distance of vehicle was analyzed. The battery bank charging and discharge performance were studied with and without solar energy. The refrigerator was consuming 116 Wh energy per day to maintain a -12 oC lower temperature on the no-load condition at the higher thermostat position. The refrigerator was run continuously for 4-6 days on battery bank energy and 7-10 days on the full load condition of hybrid energy. The vehicle was travelling at a maximum of 23 km/h speed on full load condition. The vehicle needed torque 14-16 N-m at the initial phase for each load condition. Torque demand was decreasing with the increasing speed of the vehicle. The full-charged battery bank's initial voltage was 51.04 V, and the cut-off voltage was 46.51 V. The vehicle was covering a distance of 62.4 km with the battery bank alone at full load condition. It was travelling 68.3 km distance with hybrid energy mode. The vehicle's integrated system was the best in maintaining battery performance, power contribution capability, and drive range enhancement.

2016 ◽  
Vol 78 (6) ◽  
Author(s):  
Mohd Sabirin Rahmat ◽  
Fauzi Ahmad ◽  
Ahmad Kamal Mat Yamin ◽  
Noreffendy Tamaldin ◽  
Vimal Rau Aparow ◽  
...  

This paper provided a validated modeling and a simulation of a 6 degree freedom vehicle longitudinal model and drive-train component in a series hybrid electric vehicle. The 6-DOF vehicle dynamics model consisted of tire subsystems, permanent magnet synchronous motor which acted as the prime mover coupled with an automatic transmission, hydraulic brake subsystem, battery subsystem, alternator subsystem and internal combustion engine to supply the rotational input to the alternator. A speed and torque tracking control systems of the electric power train were developed to make sure that the power train was able to produce the desired throttle torque in accelerating the vehicle. A human-in-the-loop-simulation was utilized as a mechanism to evaluate the effectiveness of the proposed hybrid electric vehicle. The proposed simulation was used as the preliminary result in identifying the capability of the vehicle in terms of the maximum speed produced by the vehicle and the capability of the alternator to recharge the battery. Several tests had been done during the simulation, namely sudden acceleration, acceleration and braking test and unbounded motion. The results of the simulation showed that the proposed hybrid electric vehicle can produce a speed of up to 70 km/h with a reasonable charging rate to the battery. The findings from this study can be considered in terms of design, optimization and implementation in a real vehicle.


JOURNAL ASRO ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 105
Author(s):  
Sutrisno Sutrisno ◽  
Wawan Kusdiana ◽  
Ayip Rivai Prabowo ◽  
Muhammad Askhuri

KRI Halasan - 630 is one of the Fast Missile warships with a length of 60 Meters which apart of fast patrol boat class which belongs to TNI-AL. Accordance with the main function not only as a fast missile boat but also as a patrol ship killer, this ship was made to have a high ability in “hit and run”. Since the beginning of the manufacture and after being inaugurated as KRI in 2014 this ship is able to reach speed until 27 knot in full load. As time goes on the same conditions the speed that this ship can achieve is 25 knot at maximum speed. This can be caused by increase in value from the resistance of the ship. One way to reduce the value of the resistance of the ship is to minimize the Wet Surface Area(WSA) from the ship. By adding hydrofoil technology will produce lift force which could lift apart of the hull ship from the water so that Wet Surface Area from the ship will reduce. From the calculation, to lift on the hull of KRI Halasan Class 20 cm in full load condition at 25 knot knows that dimension for fore foil with tapered straight type are wingspan 4,6 m, wingroot 1,33 m, wingtip 0,5 m, and swept angle 11°. And dimension for aft foil with rectangular straight type are wingspan 5,3 m, wingroot and wingtip 1,365 m, and swept angle 0°. The ship resistance with hydrofoil is 265,5 KN, while in the same condition and speed from the ship without hydrofoil the value of ship resistance is 267 KN. By adding hydrofoil technology could reduce the ship resistance 1,5 KN. This values could make 19,29 KW or 25,86 Hp in power saving.Keywords : Hydrofoil technology, Ship Resistance, Halasan Class


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3528
Author(s):  
Jakub Lasocki ◽  
Artur Kopczyński ◽  
Paweł Krawczyk ◽  
Paweł Roszczyk

A range extender is an auxiliary power unit, usually consisting of an internal combustion engine and an electric generator, which is used to charge a battery of an electric vehicle in order to increase its range. This paper considers a range extender supplied with liquefied petroleum gas (LPG). The aim is to provide detailed data on thermal efficiency, brake specific fuel consumption (BSFC), and unit emission of carbon dioxide (CO2) in a broad spectrum of range extender operating conditions defined by rotational speed and torque. The experimental investigation has been conducted using a laboratory test stand equipped with an energy dissipation system of adjustable resistance. Measurement results, including fuel flow rate, were processed using custom algorithm for generating maps, i.e., two-dimensional dependencies of the considered parameters on the rotational speed and torque. The maps obtained for LPG supply were compared with those for gasoline supply. The results demonstrated feasibility of LPG-supplied range extender. Its BSFC and thermal efficiency were at a comparable level to those obtained for gasoline supply, but with less CO2 emission. The empirical data collected has been adopted in the simulation of extended-range electric vehicle in a driving cycle, showing the potential of utilizing the results of this study.


2021 ◽  
Vol 18 (1) ◽  
pp. 12-29
Author(s):  
V. N. Kuznetsova ◽  
R. V. Romanenko

Introduction. The use of an electromechanical transmission in the design of a tracked vehicle allows an increase in the complex indicator of mobility, an increase in the range, fuel efficiency, maximum speed, a decrease in acceleration time, etc. The improvement of these indicators is achieved mainly due to the different performance characteristics of the internal combustion engine and the energy characteristics of electrical machines. The latter fact makes it possible to ensure the operation of the power plant of the tracked vehicle in such a way as to avoid unfavorable operating modes of both the internal combustion engine and the elements of the electromechanical transmission (a generator, a traction electric motor, an energy storage) from the point of view of energy efficiency, and to realize the high efficiency of the entire system.Research methods. To improve the mobility and implement a rational strategy for electromechanical transmission control, it is necessary to have an idea of the effective modes of operation of the main elements of the power plant. As a way to solve this problem it is proposed to study the energy characteristics of the main elements of an electromechanical transmission using the developed mathematical model for various modes of movement of a tracked vehicle.Results. Modeling the motion of a tracked vehicle with an electromechanical transmission makes it possible, in addition to determining the transmission parameters, to formulate preliminary requirements for its characteristics.Discussion and conclusion. To solve these problems, it is necessary to simulate the process of movement of a tracked vehicle, taking into account the initial data that are adequate to real operating conditions.


Author(s):  
Surender Kumar ◽  
R.S. Bharj*

This paper is focused on the performance of a solar-assisted DC refrigerator installed on the backside of the electric vehicle (EV). The experiments are performed by varying load conditions inside the refrigerator. The experimental setup consists of four solar PV panels, a charge controller, battery bank, voltage converter, DC refrigerator, and an electric vehicle. The temperature inside the refrigerator cabin was controlled with the thermostat position adjustment. The solar PV panels of the vehicle was generating 2.5-4 kWh energy on the average sunny day. The refrigerator's inside temperature was decreased with a faster rate at the third thermostat position and consuming higher energy at the seventh thermostat position among all load conditions. The fourth and fifth thermostat positions were better at maintaining the lower desired temperature inside the refrigerator cabin by consuming the minimum energy. The COP of the refrigerator was decreasing with the increasing compressor speed. The battery bank was able to run the refrigerator 240 hr, 96 hr, 72 hr for the no-load, 15 L load, and 25 L load conditions at the higher thermostat position. The vehicle was travelling 68.3 km, 65.3.6 km, 63.4 km distance in no-load, 100 kg, and 200 kg load conditions respectively by consuming 3010 Wh, 3230 Wh, and 3450 Wh energy. The travelling charge of this vehicle was 1-1.5 INR per kilometer


Author(s):  
Zhanming Ding ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Yong Yin ◽  
Shuyong Zhang

Waste heat recovery (WHR) is one of the main approaches to improve the internal combustion engine (ICE) overall efficiency and reduce emissions. The electric turbocompounding (ETC) technology is considered as a promising WHR technology for vehicle engines due to its compactness and light weight. In order to improve the overall fuel efficiency of the engine at practical operating conditions, the impacts of the implementation of the ETC system should be investigated not only at engine full load conditions, but also under practical driving cycles. In this paper, an ETC system was designed for a 4.75 L diesel engine, in which a power turbine was installed down-stream to the turbocharger turbine. A performance simulation model of the ETC engine was developed on the basis of the diesel engine model, which was validated against engine performance experimental data. The control strategies of the wastegate of turbocharger turbine, the wastegate of power turbine and the operating torque of generator were determined. The relative variation in BSFC was studied under full range of operating conditions, and results show that the maximum improvement of fuel economy is 6.7% at an engine speed of 1000 rpm and 70% of full load, in comparison with the baseline diesel engine. Main factors lead to the performance differences between the ETC engine and the baseline engine were analyzed. Furthermore, the performance of the ETC engine under the C-WTVC driving cycle was investigated. Results show that the implementation of the ETC system resulted in a 1.2% fuel consumption reduction under the C-WTVC driving cycle.


2014 ◽  
Vol 709 ◽  
pp. 300-303
Author(s):  
Kuang Shine Yang ◽  
Chih Ming Chang

This paper introduced a new power flow control strategy for a variable speed engine-generator based range-extended electric vehicle. The specific fuel consumption map of the internal combustion engine (ICE) has been obtained by off-line experiments to achieve optimal fuel efficiency. Finally, a typical range-extended electric vehicle is modeled and investigated such as acceleration traversing ramp, maximum speed, fuel consumption and emission are performed on the dynamic model of a range-extended electric vehicle. The energy consumption and cost were compared to tradition range-extended electric vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed power flow control approach using for series hybrid electric vehicle.


DYNA ◽  
2020 ◽  
Vol 87 (215) ◽  
pp. 66-75
Author(s):  
Nelly De Armas Calderón ◽  
Cristina Lizarazo Bohórquez ◽  
Jorge Duarte Forero

In this research, the implementation of an integrated system composed of a dual-fuel engine (Diesel-Hydrogen), a PEM electrolyzer and a thermoelectric generator is envisioned. In order to know the optimal operating conditions of each sub-system, the exergetic efficiency and destroyed exergy were studied. It was estimated that for the dual combustion engine, the destroyed exergy would increase as a function of the concentration of methane in its mixture. By varying the electrical input to the electrolyzer, it was found that when the input current was 2A, the exergetic efficiency would go up to 92.59%, while for a current of 5A, the efficiency decreased in 51.80%. Finally, the exergetic efficiency of TEG decreased by increasing the hot flow temperature; 86.68% of the decrease in efficiency occurred for temperatures between 470K and 510K. On the other hand, the destroyed exergy increased linearly with an increase in the inlet temperature of exhaust gases.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yolanda Pérez-Pimentel ◽  
Ismael Osuna-Galán ◽  
Carlos Avilés-Cruz ◽  
Juan Villegas-Cortez

The technology of power electronic systems has diversified into industrial, commercial, and residential areas. Developing a strategy to improve the performance of the electrical energy of an electric vehicle (EV) requires an analysis of the model that describes it. EVs are complex mechatronic systems described by nonlinear models and, therefore, its study is not an easy task. It can improve the performance of a battery bank by creating new batteries that allow for greater storage or by developing a management energy system. This article shows the development of a power supply management system based on fuzzy logic for an electric vehicle, in order to minimize the total energy consumption and optimize the battery bank. The experimental result is shown using the fuzzy controller under standard operating conditions. An increase in battery performance and overall performance of energy consumption is shown. Speed signals acquired show improvements in some dynamic, such as overshoot, settling time, and steady-state error parameters. It is shown that this fuzzy controller increases the overall energy efficiency of the vehicle.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Robert Radu ◽  
Diego Micheli ◽  
Stefano Alessandrini ◽  
Iosto Casula ◽  
Bogdan Radu

The paper presents the model of a combined heat and power (CHP) unit, based on a variable speed internal combustion engine (ICE) interfaced with a photovoltaic (PV) system. This model is validated by means of experimental data obtained on an 85 kWe CHP unit fueled with natural gas and a PV system with a rated power of 17.9 kW. Starting from daily load profiles, the model is applied to investigate the primary energy saving (PES) of the integrated CHP + PV system in several operating conditions and for different sizes of PV array. The results demonstrate the dependence of the CHP performance on the operating mode and a limited convenience of the variable speed strategy. The integrated system operation leads to performance improvements, which depend on the size of the PV component.


Sign in / Sign up

Export Citation Format

Share Document