scholarly journals Optimization of Bio Degradable Nano Cutting Fluid Parameters during Machining of Titanium Alloy

2020 ◽  
Vol 8 (6) ◽  
pp. 2378-2384

Varieties of cutting fluids are available in market to facilitate good machining objectives for metal removing Industries. Eventually, majority of the cutting fluids are synthetic and semi synthetic in nature, despite they are helping to the industries but they are harmful to health of the operators and environment. Though they are having good properties needed for machining, nature of non-biodegradability and non-friendliness to the environment are the key barriers associated with these fluids. Various researches have been carried out to prepare a vegetable based bio degradable effective cutting fluid to nullify above said constraints. In this research work, a unique castor oil based cutting fluid infused with nano molybdenum di sulfide (MoS2) particles has been prepared and its performance during machining has been investigated. In this study, much attention has been applied to achieve the optimized parameters of the biodegradable nano cutting fluid. Taguchi's method equipped with gray relational analysis was utilized by considering the size of the nano particles, nano particle inclusion (npi) and flow rate as the chief fluid parameters. The surface roughness and tool wear were treated as responses. As per L9 orthogonal array, totally nine experiments were conducted. Additionally, the most significant parameter which affects the machining responses was identified with the help of grey grade, ANOVA and MRPI ranking. Confirmation test were carried out followed by prediction of grey grade so as to improve the degree of validation. It has been observed that there was significant improvement in gray grade for the optimal parameters.

2020 ◽  
Vol 16 (6) ◽  
pp. 1709-1729
Author(s):  
Sagar Dnyandev Patil ◽  
Yogesh J. Bhalerao

PurposeIt is seen that little amount of work on optimization of mechanical properties taking into consideration the combined effect of design variables such as stacking angle, stacking sequence, different resins and thickness of composite laminates has been carried out. The focus of this research work is on the optimization of the design variables like stacking angle, stacking sequence, different resins and thickness of composite laminates which affect the mechanical properties of hybrid composites. For this purpose, the Taguchi technique and the method of gray relational analysis (GRA) are used to identify the optimum combination of design variables. In this case, the effect of the abovementioned design variables, particularly of the newly developed resin (NDR) on mechanical properties of hybrid composites has been investigated.Design/methodology/approachThe Taguchi method is used for design of experiments and with gray relational grade (GRG) approach, the optimization is done.FindingsFrom the experimental analysis and optimization study, it was seen that the NDR gives excellent bonding strength of fibers resulting in enhanced mechanical properties of hybrid composite laminates. With the GRA method, the initial setting (A3B2C4D2) was having GRG 0.866. It was increased by using a new optimum combination (A2B2C4D1) to 0.878. It means that there is an increment in the grade by 1.366%. Therefore, using the GRA approach of analysis, design variables have been successfully optimized to achieve enhanced mechanical properties of hybrid composite laminates.Originality/valueThis is an original research work.


2018 ◽  
Vol 7 (2) ◽  
pp. 116-120
Author(s):  
Amrit Pal ◽  
Hazoor Singh Sidhu

Owing to environmental concerns and growing regulations over contamination and pollution, the demand for renewable and biodegradable cutting fluids is rising. The aim of this paper is to review the eco-friendly and user-friendly minimum quantity lubrication (MQL) technique using vegetable-based oil and solid lubricant in different machining processes. It has been reported in various literature that the minimum quantity lubrication (MQL) method using vegetable oil-based cutting fluid shows superior performance as compared to dry and wet machining. The major benefits of MQL are reduction of consumption of cutting fluid, cost saving, reduction of impact to the environment and improved overall performances in cutting operation and the surface quality. To achieve improved thermal conductivity researchers focused attention on nano fluids. Nano fluids are nano-metered sized colloidal suspensions in the base fluid like water, oil, glycol, etc. The application of nano fluid controls the tool wear by reducing the temperature. Impingement of the nano-particles with high pressure in MQL enables entry of nano-particles at the tool chip interface. Thus it reduces the coefficient of friction and improves machining performance significantly.


2021 ◽  
Vol 12 (4) ◽  
pp. 5324-5346

Due to traditional mineral oils' adverse environmental and health effects, vegetable oil-based cutting fluids have become widely attractive in machining. The majority of the vegetable oils used in literature are edible and may compete with human consumption if promoted, thereby making it more expensive as cutting fluids. However, few studies have been carried out on the applicability of lesser-known vegetable oils as cutting fluids. This study, therefore, aims at investigating the efficiency of lesser-known vegetable oil (watermelon oil) as a machining cutting fluid. The developed watermelon oil was mechanically compared to the traditional mineral oil in turning AISI 1525 steel based on cutting temperature, surface roughness, and chip formation mode. The experiment depended on Taguchi plan with L9 orthogonal arrangement utilizing feed rate, depth of cut, and cutting speed as critical input parameters. Moreover, the grey relational analysis optimization approach was employed to analyze the parameter impacts and achieve the best possible cutting parameters. The optimization showed that the best combinations of cutting parameters for cutting speed, feed rate, and depth of cut were (355 rev/min, 0.1 mm/rev and 1 mm), and (355 rev/min, 0.1 mm/rev, and 1.25 mm) for watermelon and mineral oils, respectively.


2021 ◽  
Author(s):  
Zohreh Shakeria ◽  
Khaled Benfriha ◽  
Nader Zirak ◽  
Mohammadali Shirinbayan

Abstract One of the most widely used additive manufacturing (AM) methods is Fused Filament Fabrication (FFF), which can produce complex geometry parts. In this process, a continuous filament of thermoplastic material is deposited layer by layer to make the final piece. One of the essential goals in the production of parts with this method is to produce parts with high mechanical properties and excellent geometrical accuracy at the same time. Among the various methods used to improve the desired properties of produced parts is to determine the optimum process parameters in this process. This paper investigates the effect of different process parameters on four essential parameters: chamber temperature, Printing temperature, layer thickness, and print speed on cylindricity, circularity, strength, Young’s modulus, and deformation by Gray Relational Analysis method simultaneously. Taguchi method was used to design the experiments, and the PA6 cylindrical parts were fabricated using a German RepRap X500® 3D printer. Then the GRG values were calculated for all experiments. In the 8th trial, the highest value of GRG was observed. Then, to discover the optimal parameters, the GRG data were analyzed using ANOVA and S/N analysis, and it was determined that the best conditions for enhancing GRG are 60 °C in the chamber temperature, 270 °C in the printing temperature, 0.1 mm layer thickness, and 600 mm/min print speed. Finally, by using optimal parameters, a verification test was performed, and new components were investigated. Finally, by comparing the initial GRG with the GRG of the experiment, it was discovered that the GRG value had improved by 14%.


Author(s):  
Gustavo Fernandes ◽  
Sanderson Clayton ◽  
Bernardo Jakitsch ◽  
Luis Henrique Andrade Maia ◽  
Mariana Gomes ◽  
...  

2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2011 ◽  
Vol 328-330 ◽  
pp. 2400-2404
Author(s):  
Zi Qi Ju

To prevent runway incursions, we should have the corresponding systematic prevent ideas. Based on the definition of runway incursions and classification of relevant criteria, it analyzed the runway incursion system, put forward the closed-loop management ideas to prevent runway incursions, and found the main contradictions of preventing runway incursions using the gray relational analysis. With the example of runway incursion dates of U.S.A, by means of Grey Relational Analysis of different severities and different factors for runway incursions, it have shown that the key factors leading to the class AB and class CD runway incursions are Vehicle/Pedestrian Deviations and Pilot Deviations respectively. Meanwhile, it proposed integrated prevention measures of runway incursions.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 773
Author(s):  
Elisabet Benedicto ◽  
Eva María Rubio ◽  
Laurent Aubouy ◽  
María Ana Sáenz-Nuño

The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl – which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.


2021 ◽  
Vol 11 (5) ◽  
pp. 2344
Author(s):  
Srikanth Vuppala ◽  
Riyaaz Uddien Shaik ◽  
Marco Stoller

Olive oil production is one of the important industrial sectors within the agro-food framework of the Mediterranean region, economically important to the people working in this sector, although there is also a threat to the environment due to residues. The main wastes of the olive oil extraction process are olive mill wastewater (OMW) and olive husks which also require proper treatment before dismissal. In this research work, the main goal is to introduce grey relational analysis, a technique for multi-response optimization, to the coagulation and flocculation process of OMW to select the optimum coagulant dosage. The coagulation and flocculation process was carried out by adding aluminum sulfate (Alum) to the waste stream in different dosages, starting from 100 to 2000 mg/L. In previous research work, optimization of this process on OMW was briefly discussed, but there is no literature available that reports the optimal coagulant dosage verified through the grey relational analysis method; therefore, this method was applied for selecting the best operating conditions for lowering a combination of multi-responses such as chemical oxygen demand (COD), total organic carbon (TOC), total phenols and turbidity. From the analysis, the 600 mg/L coagulant dosage appears to be top ranked, which obtained a higher grey relational grade. The implementation of statistical techniques in OMW treatment can enhance the efficiency of this process, which in turn supports the preparation of waste streams for further purification processes in a sustainable way.


2013 ◽  
Vol 401-403 ◽  
pp. 1766-1771 ◽  
Author(s):  
Lan Kou ◽  
Si Rui Chen ◽  
Rui Wang

Multipath Transmission Control Protocol (MPTCP), a transport layer protocol, proposed by the IETF working group in 2009, can provide multipath communication end to end. It also can improve the utilization of network resources and network transmission reliability. However, that how to select multiple paths to improve the end to end overall throughput, and how to avoid the throughput declining by the performance difference, become the focus of this study. We propose a path selection strategy based on improved gray relational analysis, and set the optimal values of the QoS parameters for the selected paths as the reference sequence. According to the value of improved grey relational degree (IGRD) which is compared with reference sequence, we select the paths with better performance, smaller difference for transmission.


Sign in / Sign up

Export Citation Format

Share Document