scholarly journals Broadband Extended Array Response-Based Subspace Multiparameter Estimation Method for Multipolarized Wireless Channel Measurements

Author(s):  
Bensheng Yang ◽  
Peize Zhang ◽  
Haiming Wang ◽  
Cheng-Xiang Wang ◽  
Xiaohu You

The clustered delay line channel model, in which each cluster consists of a number of rays, is widely used for link-level evaluations in mobile communications. Multiple parameters of each ray, including delay, amplitude, cross polarization ratio (XPR), initial phases of four polarization combinations and the azimuth and elevation angles of arrival and departure, shall be known. These parameters are measured using a channel sounder. The number of rays in every cluster is usually greater than the number of elements in the antenna array of the channel sounder, which represents a challenging issue in multipolarized channel measurements. A new subspace estimation method based on the broadband extended array response of an electromagnetic vector antenna array is proposed to resolve a large number of rays. The interelement spacing of the array can be greater than half the carrier wavelength, which reduces interelement coupling and simplifies the array design, especially for millimeter wave bands. First, the delay of each cluster is estimated using the reference antenna element. Then, the 2D angles of every ray are estimated using the classic rank-deficient multiple signal classification (MUSIC). Lastly, the initial phases, XPR and amplitude of every ray is estimated. Simulation results validate the proposed method.

2020 ◽  
Author(s):  
Bensheng Yang ◽  
Peize Zhang ◽  
Haiming Wang ◽  
Cheng-Xiang Wang ◽  
Xiaohu You

The clustered delay line channel model, in which each cluster consists of a number of rays, is widely used for link-level evaluations in mobile communications. Multiple parameters of each ray, including delay, amplitude, cross polarization ratio (XPR), initial phases of four polarization combinations and the azimuth and elevation angles of arrival and departure, shall be known. These parameters are measured using a channel sounder. The number of rays in every cluster is usually greater than the number of elements in the antenna array of the channel sounder, which represents a challenging issue in multipolarized channel measurements. A new subspace estimation method based on the broadband extended array response of an electromagnetic vector antenna array is proposed to resolve a large number of rays. The interelement spacing of the array can be greater than half the carrier wavelength, which reduces interelement coupling and simplifies the array design, especially for millimeter wave bands. First, the delay of each cluster is estimated using the reference antenna element. Then, the 2D angles of every ray are estimated using the classic rank-deficient multiple signal classification (MUSIC). Lastly, the initial phases, XPR and amplitude of every ray is estimated. Simulation results validate the proposed method.


Author(s):  
Grzegorz Korzeniewski ◽  
◽  
Roberto Carrasco Álvarez ◽  

Industrial wireless channel is a challenge for the design of communication systems, due to non-Line-of-Sight transmission, caused by the presence of many highly reflective obstacles, and machines in operation, which are a source of the increased noise level. The main effect, which must be analyzed, is multipath propagation. In this article, a low-cost sounding system is proposed, based on Software Defined Radio (SDR) equipment, with the intention of making sounding devices more accessible to a larger group of researchers. Likewise, the mathematical foundations and the software/hardware implementation of the wireless channel sounding system are presented, and the solutions to mitigate the synchronization issues and SDR limitations are also introduced. The performance of the proposed sounder is validated through a measurement campaign in an industrial workshop, considering the 2.4 GHz Industrial, Scientific, Medical (ISM) band. Channel sounding measurements corroborate the accuracy of the results, which converge with the channel mathematical models proposed for several industrial environments and reported in the state-of-the-art literature. In this sense, the proposed channel sounder can be used to investigate the wireless propagation environments.


2020 ◽  
Author(s):  
Joerg Eisenbeis ◽  
Magnus Tingulstad ◽  
Nicolai Kern ◽  
Zsolt Kollár ◽  
Jerzy Kowalewski ◽  
...  

<div>Hybrid beamforming systems represent an efficient</div><div>architectural solution to realize massive multiple-input multiple-output (MIMO) communication systems in the centimeter wave (cmW) and millimeter wave (mmW) region. These hybrid beamforming systems separate the beamforming process into a digital and analog beamforming network. The analog beamforming networks can be realized by different architectural solutions, which demand dedicated algorithms to determine the complex weighting factors in the digital and analog domain. To date, novel hybrid beamforming architectures and algorithms are solely compared in numerical simulations based on statistical channel models. These abstract channel models simplify the complicated electromagnetic propagation process, thereby not exactly reconstructing the wireless channel. Within this work, we present a measurement-based evaluation of hybrid beamforming algorithms and compare them with numerical results gained from a statistical path-based MIMO channel model. The results show that by adjustment of the channel model parameter the simulation achieves a good match with the measured maximum achievable spectral efficiencies.</div>


2013 ◽  
Vol 765-767 ◽  
pp. 2728-2731
Author(s):  
Jian Jiao ◽  
Xue Jiao Zheng

A virtual representation of the sparse multipath wireless channel model is proposed based on a physical wireless channel, the channel corresponds to a delay in Doppler scattering angle, uniform sampling in signal space dimensions. This virtual representation model, through the antenna array configuration extension on MIMO channel capacity was estimated. The simulation results show that the three typical antenna array configuration enough that the performance of channel optimal at all SNR conditions can be approximated, reconfigurable arrays can achieve channel capacity expansion purposes.


2020 ◽  
Author(s):  
Joerg Eisenbeis ◽  
Magnus Tingulstad ◽  
Nicolai Kern ◽  
Zsolt Kollár ◽  
Jerzy Kowalewski ◽  
...  

<div>Hybrid beamforming systems represent an efficient</div><div>architectural solution to realize massive multiple-input multiple-output (MIMO) communication systems in the centimeter wave (cmW) and millimeter wave (mmW) region. These hybrid beamforming systems separate the beamforming process into a digital and analog beamforming network. The analog beamforming networks can be realized by different architectural solutions, which demand dedicated algorithms to determine the complex weighting factors in the digital and analog domain. To date, novel hybrid beamforming architectures and algorithms are solely compared in numerical simulations based on statistical channel models. These abstract channel models simplify the complicated electromagnetic propagation process, thereby not exactly reconstructing the wireless channel. Within this work, we present a measurement-based evaluation of hybrid beamforming algorithms and compare them with numerical results gained from a statistical path-based MIMO channel model. The results show that by adjustment of the channel model parameter the simulation achieves a good match with the measured maximum achievable spectral efficiencies.</div>


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jianwen Ding ◽  
Lei Zhang ◽  
Jingya Yang ◽  
Bin Sun ◽  
Jiying Huang

The rapid development of high-speed railway (HSR) and train-ground communications with high reliability, safety, and capacity promotes the evolution of railway dedicated mobile communication systems from Global System for Mobile Communications-Railway (GSM-R) to Long Term Evolution-Railway (LTE-R). The main challenges for LTE-R network planning are the rapidly time-varying channel and high mobility, because HSR lines consist of a variety of complex terrains, especially the composite scenarios where tunnels, cuttings, and viaducts are connected together within a short distance. Existing researches mainly focus on the path loss and delay spread for the individual HSR scenarios. In this paper, the broadband measurements are performed using a channel sounder at 950 MHz and 2150 MHz in a typical HSR composite scenario. Based on the measurements, the pivotal characteristics are analyzed for path loss exponent, power delay profile, and tap delay line model. Then, the deterministic channel model in which the 3D ray-tracing algorithm is applied in the composite scenario is presented and validated by the measurement data. Based on the ray-tracing simulations, statistical analysis of channel characteristics in delay and Doppler domain is carried out for the HSR composite scenario. The research results can be useful for radio interface design and optimization of LTE-R system.


Sign in / Sign up

Export Citation Format

Share Document