scholarly journals A Four-Channel Gray-Code Addressing TDM Clocked-Analog LDO for Thermo-Optic Tuning in Silicon Photonics

Author(s):  
tianchi ye ◽  
kaixuan ye ◽  
Min Tan

This paper presents a Gray-code addressing time division multiplexing (TDM) clocked-analog low-dropout regulator (CLDO) that shares one controller between four output channels with only one compensation capacitor. We apply the Gray-code addressing strategy to reduce the crosstalk. We also apply the split-output amplifier structure to share the compensation capacitor for further chip area reduction. In addition, we introduce a lightweight local-generated supply to increase the dynamic range. Implemented in 130 nm CMOS process, this design has a total chip area of 0.056 mm2 , which is 67.5% smaller than the conventional solution with four identical LDOs. Post layout simulation results show that the presented four-channel TDM CLDO can simultaneously track four 1 V<sub>pp</sub> sinusoidal signals at different frequencies with negligible crosstalk. This TDM CLDO is a promising solution for supplying multiple thermo-optic phase shifters (TOPSs) in silicon photonics

2021 ◽  
Author(s):  
tianchi ye ◽  
kaixuan ye ◽  
Min Tan

This paper presents a Gray-code addressing time division multiplexing (TDM) clocked-analog low-dropout regulator (CLDO) that shares one controller between four output channels with only one compensation capacitor. We apply the Gray-code addressing strategy to reduce the crosstalk. We also apply the split-output amplifier structure to share the compensation capacitor for further chip area reduction. In addition, we introduce a lightweight local-generated supply to increase the dynamic range. Implemented in 130 nm CMOS process, this design has a total chip area of 0.056 mm2 , which is 67.5% smaller than the conventional solution with four identical LDOs. Post layout simulation results show that the presented four-channel TDM CLDO can simultaneously track four 1 V<sub>pp</sub> sinusoidal signals at different frequencies with negligible crosstalk. This TDM CLDO is a promising solution for supplying multiple thermo-optic phase shifters (TOPSs) in silicon photonics


2019 ◽  
Vol 29 (07) ◽  
pp. 2050108
Author(s):  
Di Li ◽  
Chunlong Fei ◽  
Qidong Zhang ◽  
Yani Li ◽  
Yintang Yang

A high-linearity Multi-stAge noise SHaping (MASH) 2–2–2 sigma–delta modulator (SDM) for 20-MHz signal bandwidth (BW) was presented. Multi-bit quantizers were employed in each stage to provide a sufficiently low quantization noise level and thus improve the signal-to-noise ratio (SNR) performance of the modulator. Mismatch noise in the internal multi-bit digital-to-analog converters (DACs) was analyzed in detail, and an alternative randomization scheme based on multi-layer butterfly-type network was proposed to suppress spurious tones in the output spectrum. Fabricated in a 0.18-[Formula: see text]m single–poly 4-metal Complementary Metal Oxide Semiconductor (CMOS) process, the modulator occupied a chip area of 0.45[Formula: see text]mm2, and dissipated a power of 28.8[Formula: see text]mW from a 1.8-V power supply at a sampling rate of 320[Formula: see text]MHz. The measured spurious-free dynamic range (SFDR) was 94[Formula: see text]dB where 17-dB improvement was achieved by applying the randomizers for multi-bit DACs in the first two stages. The peak signal-to-noise and distortion ratio (SNDR) was 76.9[Formula: see text]dB at [Formula: see text]1 dBFS @ 2.5-MHz input, and the figure-of-merit (FOM) was 126[Formula: see text]pJ/conv.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 734
Author(s):  
Karolis Kiela ◽  
Marijan Jurgo ◽  
Vytautas Macaitis ◽  
Romualdas Navickas

This article presents a wideband reconfigurable integrated low-pass filter (LPF) for 5G NR compatible software-defined radio (SDR) solutions. The filter uses Active-RC topology to achieve high linearity performance. Its bandwidth can be tuned from 2.5 MHz to 200 MHz, which corresponds to a tuning ratio of 92.8. The order of the filter can be changed between the 2nd, 4th, or 6th order; it has built-in process, voltage, and temperature (PVT) compensation with a tuning range of ±42%; and power management features for optimization of the filter performance across its entire range of bandwidth tuning. Across its entire order, bandwidth, and power configuration range, the filter achieves in-band input-referred third-order intercept point (IIP3) between 32.7 dBm and 45.8 dBm, spurious free dynamic range (SFDR) between 63.6 dB and 79.5 dB, 1 dB compression point (P1dB) between 9.9 dBm and 14.1 dBm, total harmonic distortion (THD) between −85.6 dB and −64.5 dB, noise figure (NF) between 25.9 dB and 31.8 dB and power dissipation between 1.19 mW and 73.4 mW. The LPF was designed and verified using 65 nm CMOS process; it occupies a 0.429 mm2 area of silicon and uses a 1.2 V supply.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


2011 ◽  
Vol 20 (01) ◽  
pp. 1-13 ◽  
Author(s):  
CHENCHANG ZHAN ◽  
WING-HUNG KI

A CMOS low quiescent current low dropout regulator (LDR) with high power supply rejection (PSR) and without large output capacitor is proposed for system-on-chip (SoC) power management applications. By cascoding a power NMOS with the PMOS pass transistor, high PSR over a wide frequency range is achieved. The gate-drive of the cascode NMOS is controlled by an auxiliary LDR that draws only 1 μA from a small charge pump, thus helping in reducing the quiescent current. Adaptive biasing is employed for the multi-stage error amplifier of the core LDR to achieve high loop gain hence high PSR at low frequency, low quiescent current at light load and high bandwidth at heavy load. A prototype of the proposed high-PSR LDR is fabricated using a standard 0.35 μm CMOS process, occupying an active area of 0.066 mm2. The lowest supply voltage is 1.6 V and the preset output voltage is 1.2 V. The maximum load current is 10 mA. The measured worst-case PSR at full load without using large output capacitor is -22.7 dB up to 60 MHz. The line and load regulations are 0.25 mV/V and 0.32 mV/mA, respectively.


2012 ◽  
Vol 591-593 ◽  
pp. 2632-2635
Author(s):  
Lee Chu Liang ◽  
Roslina Mohd Sidek

A low power low-dropout (LDO) voltage regulator with self-reduction quiescent current is proposed in this paper. This proposed capacitorless LDO for Silicon-on-Chip (SoC) application has introduced a self-adjustable low-impedance circuitry at the output of LDO to attain stability critically during low output load current (less than a few hundred of micro-ampere). When the LDO load current increases, it reduces the LDO output impedance and moved the pole towards higher frequency away from the dominant pole and improving the system stability. When this happen, less amount of quiescent current is needed for the low-impedance circuitry to sustain the low output impedance. In this proposed LDO, the quiescent current that been used to sustain the low output impedance will be self-reduced when the output load current increases. Thus, the reduction of quiescent current at low output load current has tremendously improved the efficiency. The simulation results have shown a promising stability at low load current 0~1mA. The dropout voltage for this LDO is only 100mV at 1.2V supply. The proposed LDO is validated using Silterra 0.13μm CMOS process model and designed with high efficiency at low output load current.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3370 ◽  
Author(s):  
Saghi Forouhi ◽  
Rasoul Dehghani ◽  
Ebrahim Ghafar-Zadeh

This paper proposes a novel charge-based Complementary Metal Oxide Semiconductor (CMOS) capacitive sensor for life science applications. Charge-based capacitance measurement (CBCM) has significantly attracted the attention of researchers for the design and implementation of high-precision CMOS capacitive biosensors. A conventional core-CBCM capacitive sensor consists of a capacitance-to-voltage converter (CVC), followed by a voltage-to-digital converter. In spite of their high accuracy and low complexity, their input dynamic range (IDR) limits the advantages of core-CBCM capacitive sensors for most biological applications, including cellular monitoring. In this paper, after a brief review of core-CBCM capacitive sensors, we address this challenge by proposing a new current-mode core-CBCM design. In this design, we combine CBCM and current-controlled oscillator (CCO) structures to improve the IDR of the capacitive readout circuit. Using a 0.18 μm CMOS process, we demonstrate and discuss the Cadence simulation results to demonstrate the high performance of the proposed circuitry. Based on these results, the proposed circuit offers an IDR ranging from 873 aF to 70 fF with a resolution of about 10 aF. This CMOS capacitive sensor with such a wide IDR can be employed for monitoring cellular and molecular activities that are suitable for biological research and clinical purposes.


2012 ◽  
Vol 256-259 ◽  
pp. 2373-2378
Author(s):  
Wu Shiung Feng ◽  
Chin I Yeh ◽  
Ho Hsin Li ◽  
Cheng Ming Tsao

A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm CMOS process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between -99.98 and -115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm2.


2013 ◽  
Vol 336-338 ◽  
pp. 216-220
Author(s):  
Chun Chi Chen ◽  
Keng Chih Liu ◽  
Shih Hao Lin

This paper presents a time-domain CMOS oscillator-based temperature sensor with one-point calibration for test cost reduction. Compared with the former CMOS sensors with linear delay lines, the proposed work composed of a temperature-to-pulse generator with adjustable time gain and a time-to-digital converter (TDC) can achieve lower circuit complexity and smaller area. A temperature-dependent oscillator for temperature sensing was used to generate the period width proportional to absolute temperature (PTAT). With the help of calibration circuit, an adjustable-gain time amplifier was adopted to dynamically adjust the amplified width that was converted by the TDC into the corresponding digital code. After calibration, the fluctuation of the sensor output with process variation can be greatly reduced. The maximum inaccuracy after one-point calibration for six package chips was 1.6 °C within a 0 80 °C temperature range. The proposed sensor fabricated in a 0.35-μm CMOS process occupied a chip area of merely 0.07 mm2, achieved a fine resolution of 0.047 °C/LSB, and consumed a low power of 25 μW@10 samples/s.


2021 ◽  
Author(s):  
Darshil Patel

Low noise, high PSRR and fast transient low-dropout (LDO) regulators are critical for analog blocks such as ADCs, PLLs and RF SOC, etc. This paper presents design of low power, fast transient, high PSRR and high load-regulation low-dropout (LDO) regulator. The proposed LDO regulator is designed in 180nm. CMOS process and simulated in LTSpice and Cadence platform. The LDO proposed can support input voltage range up to 5V for loading currents up to 230mA. Measurements showed transient time or set-up time of less than 22µs, PSRR of ~66dB at 100kHz and >40dB at 1MHz and 0.8535mV of output voltage variation for a 0-230mA of load variation.


Sign in / Sign up

Export Citation Format

Share Document