scholarly journals Does Interleukin-6 Bridge SARS-CoV-2 With Virus-Associated Cancers?

Author(s):  
Aldo Venuti ◽  
Sara Donzelli ◽  
Paola Nisticò ◽  
Giovanni Blandino ◽  
Gennaro Ciliberto

ABSTRACT To date SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a member of the Coronaviridae family, has infected more than 40 million people worldwide. A second wave of SARS-CoV-2 infection is aggressively surging. The clinical worsening of SARS-CoV-2 infection appears to be strictly associated with comorbidities, which can be used to establish an intrinsic patient network whose molecular profile is pivotal for identifying and successfully treating populations at risk. Herein, we focus on the direct interaction between SARS-CoV-2 and virus-associated cancers, exploring the critical role of interleukin-6 (IL-6) as a mediator of this complex cross talk. IL-6 production is enhanced in diverse viral infections ranging from human papilloma virus (HPV) to hepatitis B virus (HBV), human immunodeficiency virus (HIV), and SARS-CoV-2 infection. High systemic levels of IL-6 are associated with viral persistence and poor clinical outcomes in SARS-CoV-2–infected patients. Blockade of IL-6/IL-6R, using specific molecules, is under investigation in active clinical trials for the treatment of patients with SARS-CoV-2. Although the data are as yet inconclusive, they pave the way for selective targeting of crucial cytokine-activated aberrant signaling in SARS-CoV-2 infection.

2021 ◽  
Vol 13 (1) ◽  
pp. 89-95
Author(s):  
Golam Sarower Bhuyan ◽  
Aftab Uz Zaman Noor ◽  
Rosy Sultana ◽  
Farjana Akther Noor ◽  
Nusrat Sultana ◽  
...  

Transfusion transmitted infections have remained a major deterrent to public health, particularly among the patients with transfusion-dependent Beta thalassemia in developing countries. Although proper donor selection through adoption of WHO-advised infection panel has lowered the rate of infections, the multi-transfused patients are not free of risk. In this study, we screened 148 transfusion-dependent Beta thalassemia patients to determine the frequency of Hepatitis C Virus (HCV), Hepatitis B Virus (HBV) and Human Immunodeficiency Virus (HIV) using the ELISA method. Among them, infected cases with HCV, HBV and HIV were 13.51%, 3.37% and 0%, respectively. Moreover, 2% of the patients were found to be co-infected with both HBV and HCV. The percentage of infections in the patients with frequent transfusion interval (≤30 days) was significantly higher (p < 0.0005) than that in the patients with less frequent transfusion intervals (>30 days). Immunochromatography (ICT)-based rapid test kits are usually used to screen and confirm these infections in the blood of the patients. However, ICT-based tests are not sensitive enough to detect the infections. So, a combination of both Nucleic Acid testing (NAT) and serological testing are suggested to significantly reduce the risk of viral infections during blood transfusion.


2021 ◽  
Vol 22 (16) ◽  
pp. 8876
Author(s):  
Pierre Layrolle ◽  
Pierre Payoux ◽  
Stéphane Chavanas

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2531-2538 ◽  
Author(s):  
T Agui ◽  
X Xin ◽  
Y Cai ◽  
T Sakai ◽  
K Matsumoto

Abstract Endothelin (ET) produced by endothelial cells has recently been found to be a potent vasoconstricting hormone. In this report, ET is shown to be a potent stimulator of interleukin-6 (IL-6) production by rat bone marrow (BM)-derived stromal cells. It was also shown that ET increased the level of mRNA for IL-6 in these cells. The two types of ET receptor (R), ETAR and ETBR, were shown to be expressed on both BM-derived stromal cells in culture and ex vivo in BM tissue, suggesting that ET works as a physiologic stimulator of IL-6 production in the BM. It was shown that ETAR is coupled to phospholipase C activation, leading to the production of inositol 1,4,5-trisphosphate (IP3) and 1,2- diacylglycerol (DAG) as second messengers in BM-derived stromal cells. This was corroborated by data showing that IL-6 production in these cells was induced by combined stimulation with ionomycin and phorbol myristate acetate, thereby bypassing the effects of IP3 and DAG, respectively. This is the first report on the hormonal regulation of IL- 6 production by BM stromal cells, indicating that hematopoiesis is subject to endocrinologic regulation under physiologic conditions. ET has recently been reported to be produced by macrophages in response to bacterial lipopolysaccharide and human immunodeficiency virus-1 glycoprotein 120. These facts, taken together with our findings, raise the possibility that ET shares the same role of IL-1 as a local cytokine, mediating an intercellular signal between macrophages and BM stromal cells in response to bacterial or viral stimulation.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1200 ◽  
Author(s):  
Allen Caobi ◽  
Madhavan Nair ◽  
Andrea D. Raymond

Most cells can release extracellular vesicles (EVs), membrane vesicles containing various proteins, nucleic acids, enzymes, and signaling molecules. The exchange of EVs between cells facilitates intercellular communication, amplification of cellular responses, immune response modulation, and perhaps alterations in viral pathogenicity. EVs serve a dual role in inhibiting or enhancing viral infection and pathogenesis. This review examines the current literature on EVs to explore the complex role of EVs in the enhancement, inhibition, and potential use as a nanotherapeutic against clinically relevant viruses, focusing on neurotropic viruses: Zika virus (ZIKV) and human immunodeficiency virus (HIV). Overall, this review’s scope will elaborate on EV-based mechanisms, which impact viral pathogenicity, facilitate viral spread, and modulate antiviral immune responses.


2019 ◽  
Vol 10 ◽  
Author(s):  
Lauro Velazquez-Salinas ◽  
Antonio Verdugo-Rodriguez ◽  
Luis L. Rodriguez ◽  
Manuel V. Borca

Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Fengling Feng ◽  
Jin Zhao ◽  
Pingchao Li ◽  
Ruiting Li ◽  
Ling Chen ◽  
...  

Antigen-specific T lymphocytes play a critical role in controlling viral infections. However, we report here that preexisting virus-specific T cell responses also contribute to promoting adenovirus (Ad) infection. Previously, we found that CD14+ monocytes from Ad-seropositive individuals exhibited an increased susceptibility to Ad infection, when compared with that of Ad-seronegative individuals. But the underlying mechanisms for this enhancement of viral infection are not completely clarified. In this study, we found that the efficacy of Ad infection into CD14+ monocytes was significantly decreased after CD3+ T lymphocytes depletion from PBMC samples of Ad-seropositive individuals. In contrast, adding virus-specific CD3+ T lymphocytes into PBMC samples of Ad-seronegative individuals resulted in a significant increase of infection efficacy. CD3+ T lymphocytes in PBMC samples from Ad-seropositive individuals were more sensitive to be activated by adenovirus stimulus, characterized by upregulation of multiple cytokines and activation markers and also enhancement of cell proliferation. Further studies demonstrated that GM-CSF and IL-4 can promote Ad infection by up-regulating the expression of scavenger receptor 1 (SR-A) and integrins αVβ5 receptor of CD14+ cells. And taken together, these results suggest a novel role of virus-specific T cells in mediating enhancement of viral infection, and provide insights to understand the pathogenesis and complicated interactions between viruses and host immune cells.


Author(s):  
Marc Bulterys ◽  
Julia Brotherton ◽  
Ding-Shinn Chen

This chapter discusses primary prevention measures that disrupt transmission of oncogenic infections. It begins by discussing vaccination against hepatitis B virus (HBV) and human papillomavirus (HPV), two major causes of cancer for which safe and effective vaccines are currently available. It briefly discusses the importance of treatment and prophylaxis against human immunodeficiency virus type 1 (HIV-1), which potentiates the virulence of other viral infections as well as directly increasing the incidence of non-Hodgkin lymphoma. It does not discuss the treatment of HBV or hepatitis C virus (HCV) infection, since these are considered in Chapters 25 and 33. Also beyond the scope of this chapter are the randomized clinical trials currently underway to assess the efficacy and feasibility of eradication of Helicobacter pylori (Chapters 24, 31), vaccination against Epstein-Barr virus (EBV) (Chapters 24, 26, 39), or the prevention of schistosomiasis and liver flukes (Chapters 24, 33, and 52).


Sign in / Sign up

Export Citation Format

Share Document