scholarly journals Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare

Author(s):  
S. Ayyasamy

Recently, the development and integration of various sensor control with smart intelligent unit is used in medical field through IoT. However, there is still a lot of space for growth in the medical and health industry's use of new technology. The traditional nurse care unit is managed through medical staffs, and the expanding medical demands creates the hospital’s patients records to be updated inefficiently. Since this is now an urgent need, developing a realistic, smart medical nursing care unit at low cost with a system capable of facilitating the effective and convenient administration of medical staff has taken a new significance. The proposed framework, conducted in the analysis to monitor medical records and activities of the emergency care unit patients, functions as a nurse and gives patients the nurse care satisfaction. The patients' actual location may be obtained for the first time by cloud computing based smart system. The precise location of the patient is critical to rescue the patient in emergency situation. This research work illustrates that the intelligent nurse care unit is the main phase called Smart Medical Nursing Care (SMNC). It contains several sensor units and by the combination of many sensors in the sensor module, it takes very less reaction time to connect or communicate both sides i.e., between patients and medical staffs.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. S. Salleh ◽  
M. Z. Omar ◽  
J. Syarif ◽  
M. N. Mohammed

Semisolid metal processing (SSM) or thixoforming is a new technology that offers several advantages over liquid processing and solid processing. This process utilizes semisolid behavior as well as reduces macrosegregation, porosity, and forming forces during shaping process. A lot of research work has been carried out by various researchers in order to exploit the potential of this process to produce different products especially for automotive industry. This paper will summarise the rheological behavior of aluminium alloys in semisolid slurries, thixoformability of modified aluminium alloys, the effect of feedstock production method on mechanical properties, and the importance of developing low-cost raw materials for semisolid processing.


The latest uproar in this era is about a technology termed as Light Fidelity or more commonly known as Li-Fi. There are currently two trends being seen: First, the extension or enrichment of wireless services and other being in-creased in user demand for these services, but the available RF spectrum for usage is very limited. So the new technology of Li-Fi came into picture, which uses visible light as a source of communication. Li-Fi is the most recent de-velopment which is resourceful. In this technology, LEDs are used to transmit data in the visible light spectrum. This technology can be compared with that of Wi-Fi and offers advantages like increased accessible spectrum, efficiency, security, low latency and much higher speed. This research paper aims at de-signing a Li-Fi transceiver using Arduino that is able to transmit digital data. The hardware has been designed using Eagle CAD (version 7.1.0) tool and Proteus design tool (version 8). The software coding is done by using Java (version 8). Successful transmission and reception of text, image and video signals is carried out on the transceiver. Hence this research work gives an innovative way of designing a transceiver which works by using off the shelf low cost components and using visible light spectrum.


2019 ◽  
Vol 9 (9) ◽  
pp. 1775 ◽  
Author(s):  
Ali Mirzaei ◽  
Jae-Hun Kim ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Hydrogen is one of the most important gases that can potentially replace fossil fuels in the future. Nevertheless, it is highly explosive, and its leakage should be detected by reliable gas sensors for safe operation during storage and usage. Most hydrogen gas sensors operate at high temperatures, which introduces the risk of hydrogen explosion. Gasochromic WO3 sensors work based on changes in their optical properties and color variation when exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates for the detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition are carefully designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen sensors. In this review, for the first time, we discuss different aspects of gasochromic WO3 gas sensor-based hydrogen detection. Pristine, heterojunction, and noble metal-decorated WO3 nanostructures are discussed for the detection of hydrogen gas in terms of changes in their optical properties or visible color. This review is expected to provide a good background for research work in the field of gas sensors.


Author(s):  
Shanmugapriya K. ◽  
T. Murugan ◽  
Thayumanavan Tha

Medicinal plants plays a significant role in the pharmaceutical industry. In present scenario, the need is to explore, identify and utilize this new medicinal plant on one hand and, on the other, to help conserve the existing but threatened species of rare medicinal plant.This present research work was carry out for the first time in South India to analyse and estimate the biochemical profiles of various extracts of fresh parts of Gnaphalium polycaulon pers., plant. The biochemical composition such as total carbohydrates, total proteins, total lipids, total phenols, cholesterol, total chlorophylls and reducing sugar, sterols were estimated using the standard procedure in fresh plant material.The biochemical analysis of Gnaphalium polycaulon plant showed the presence of various phytochemicals. The results of the present study supplement the usage of the studied plant which possesses several bioactive compounds and used as food and also as medicine.The results of present studies demonstrated that Gnaphalium polycaulon plant could be a sourceof valuable information and a guideline for the scientists, researchers in India and also all over the world


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1977
Author(s):  
Ricardo Oliveira ◽  
Liliana M. Sousa ◽  
Ana M. Rocha ◽  
Rogério Nogueira ◽  
Lúcia Bilro

In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm).


Author(s):  
Charles Atombo ◽  
Emmanuel Gbey ◽  
Apevienyeku Kwami Holali

Abstract Traffic accidents on highways are attributed mostly to the "invisibility" of oncoming traffic and road signs. "Speeding" also causes drivers to reduce the effective radius of the vehicle path in the curve, thus trespassing into the lane of the oncoming traffic. The main aim of this paper was to develop a multisensory obstacle-detection device that is affordable, easy to implement and easy to maintain to reduce the risk of road accidents at blind corners. An ultrasonic sensor module with a maximum measuring angle of 15° was used to ensure that a significant portion of the lane was detected at the blind corner. The sensor covered a minimum effective area of 0.5 m2 of the road for obstacle detection. Yellow light was employed to signify caution while negotiating the blind corner. Two photoresistors (PRs) were used as sensors because of the limited number of pins on the microcontroller (Arduino Uno). However, the device developed for this project achieved obstacle detection at blind corners at relatively low cost and can be accessed by all road users. In real-world applications, the use of piezoelectric accelerometers (vibration sensors) instead of PR sensors would be more desirable in order to detect not only cars but also two-wheelers.


2003 ◽  
Vol 20 (1) ◽  
pp. 557-561 ◽  
Author(s):  
A. Carter ◽  
J. Heale

AbstractThis paper updates the earlier account of the Forties Field detailed in Geological Society Memoir 14 (Wills 1991), and gives a brief description of the Brimmond Field, a small Eocene accumulation overlying Forties (Fig. 1).The Forties Field is located 180 km ENE of Aberdeen. It was discovered in 1970 by well 21/10-1 which encountered 119 m of oil bearing Paleocene sands at a depth of 2131 m sub-sea. A five well appraisal programme confirmed the presence of a major discovery including an extension into Block 22/6 to the southeast. Oil-in-place was estimated to be 4600 MMSTB with recoverable reserves of 1800 MM STB. The field was brought onto production in September 1975. Plateau production of 500 MBOD was reached in 1978, declining from 1981 to 77 MBOD in 1999.In September 1992 a programme of infill drilling commenced, which continues today. The earlier infill targets were identified using 3D seismic acquired in 1988. Acquisition of a further 3D survey in 1996 has allowed the infill drilling programme to continue with new seismic imaging of lithology, fluids and saturation changes. The performance of the 1997 drilling showed that high step-out and new technology wells, including multi-lateral and horizontal wells, did not deliver significantly better targets than drilling in previous years.In line with smaller targets, and in the current oil price environment, low cost technology is being developed through the 1999 drilling programme. Through Tubing Rotary Drilling (TTRD) is currently seen as the most promising way of achieving a step


1995 ◽  
Vol 400 ◽  
Author(s):  
R.T. Malkhassian

AbstractA new technology for obtainment of amorphous single-component metals is presented.For the first time the reduction of molybdenum oxide with formation of its amorphous phase is realized in conditions of a given quantum-chemical technology by means of vibrationally excited to the third quantum level hydrogen molecules with 1.5 ± 0.2 eV energy. The evidences of formation of this nonequilibrium amorphous phase are presented along with certain physicochemical properties of the obtained amorphous molybdenum.A model is proposed for the origin of amorphous phase under the influence of nonequilibrium quantum-chemical technology.


2017 ◽  
Vol 5 (39) ◽  
pp. 20860-20866 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Jung-Tsai Chen ◽  
Miao Yu

We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification.


Sign in / Sign up

Export Citation Format

Share Document