Riparian monitoring of wadeable streams at Courthouse Wash, Arches National Park: Summary report, 2010–2019

2021 ◽  
Author(s):  
Rebecca Weissinger ◽  
Dana Witwicki

The goal of Northern Colorado Plateau Network (NCPN) riparian monitoring is to determine long-term trends in hydrologic, geomorphic, and vegetative properties of wadeable streams in the context of changes in other ecological drivers, stressors, and processes. This information is intended to provide early warning of resource degradation and determine natural variability of wadeable streams. This report summarizes NCPN monitoring of Courthouse Wash in Arches National Park (NP) from 2010 to 2019. The focus of this report is to (1) present geomorphology and vegetation data from five reaches monitored in Courthouse Wash from 2010 to 2015, and (2) examine patterns in water availability at one monitoring reach from November 2010 to December 2019. Vegetation sampling and geomorphology surveys were suspended in 2016 due to budget cuts; this report presents baseline data for future comparisons. The NCPN has five monitoring reaches located between the inflow of Sevenmile Canyon, a major tributary, and the terminus of Courthouse Wash, at the Colorado River. Two reaches (2, 5) are located in Upper Courthouse Wash, and three (1, 4, 7) in Lower Courthouse Wash. Hydrologic monitoring wells are installed only at Reach 1. During our monitoring period, which included drought years in 2012 and 2018 and a wetter-than-average period from fall 2013 to 2014, groundwater levels showed steep declines corresponding to the start of the growing season each year. Hot, dry summers and falls in 2012, 2018, and 2019 showed the deepest troughs in groundwater levels. Active monsoon years helped elevate summer and fall groundwater levels in 2013 and 2014. Continued monitoring will help us better understand the relationship of climate and water availability at this reach. A geomorphic survey was completed once for reaches 2, 4, and 7, and twice for reaches 5 and 1. Powerful floods during our monitoring period resulted in aggradation of the channel in reaches 5 and 1, which were first surveyed in March 2013. Flooding in September 2013 resulted in an average of 0.24 meters of deposition found in the channel thalweg at Reach 1 in March 2014. Storm events in May 2014 caused additional aggradation. In March 2015, an average of 0.41 meters of deposition was recorded in the channel thalweg at Reach 5, with 0.32 meters of deposition between the vegetation transect headpins compared to the 2013 data. The riparian vegetation recorded at our monitoring reaches is consistent with an open-canopy Fremont cottonwood woodland with a diverse understory. Canopy closure ranged from 29% to 52%. Measurements were sensitive enough to detect a 10% reduction in canopy closure at Reach 5 during a pest infestation in June 2013. Canopy closure subsequently rebounded at the reach by 2015. Total obligate and facultative wetland cover ranged from 7% to 26%. Fremont cottonwood seedlings, saplings, and overstory trees were present at all reaches, indicating good potential for future regeneration of the canopy structure. These data can serve as a baseline for comparison with future monitoring efforts. One area of management concern is that exotic-plant frequency and cover were relatively high in all monitoring reaches. Exotic cover ranged from 2% to 30%. High exotic cover was related to years with high cover of annual brome grasses. High cover of exotic grasses is associated with increased wildfire risk in southwestern riparian systems, which are not well-adapted to fire. Managers should be prepared for this increased risk following wet winters that promote annual brome grass cover. Beaver activity was noted throughout bedrock-constrained reaches in Courthouse Wash. Beaver activity can reduce adjacent woody riparian vegetation cover, but it also contributes to maintaining a higher water table and persistent surface water. Climate change is likely to be an increasingly significant stressor in Courthouse Wash, as hotter, drier conditions decrease water levels and increase drought stress...

2021 ◽  
Vol 93 (3) ◽  
pp. 413-443
Author(s):  
Jerzy Solon ◽  
Anna Otręba ◽  
Anna Andrzejewska ◽  
Piotr T. Zaniewski

On the basis of 2001, 2007, 2012 and 2018 phytosociological records obtained from 52 permanent plots distributed across Poland’s Kampinos National Park, it proved possible to determine main directions of change in the ecological character of undergrowth. Reference to similarity of species composition on the plots between 2001 and 2018 allowed for the identification of Groups: A (occurring in boggy alder forest habitats, and comprising communities at different successional stages), B (coniferous and mixed-coniferous forests), C (oak-hornbeam forests and similar communities) and D (vegetation representing different dynamic stages of the succession from non-forest to forest communities). Irrespective of each plot’s unique history, the above Groups of plots could be characterised in line with specific sets of features subject to directional change during the period under analysis. Where Group A communities were concerned, a rise in the level of ground water and a decline in the content of organic carbon in soil were experienced, with the result that fen sedge species (Scheuchzerio-Caricetea) came to play a reduced role, even as there was a steadily-increasing role for species associated with communities flooded at least periodically (hence Potamogetonetea and Bidentetea). This was accompanied by a decrease in the number of shrub species and an increase in the number of bryophyte species. There were also increases in the proportions of geophytes and species associated with habitats more abundant in nitrogen. Group B communities were likewise subject to rising water tables, albeit changes not reflected directly in differing vegetation characteristics. The carbon: nitrogen ratio in soils here increased, as did numbers of species characteristic of undergrowth, as well as the bryophyte layer. Nevertheless, where undergrowth species were concerned, the role of those typical for open sandy grasslands (Koelerio-Corynephoretea) is seen to be declining, with this inter alia denoting increased shares of species either tolerant of shade or avoiding full illumination. There has also been a decline affecting hemicryptophytes, even as species associated with more nitrogen-rich habitats have come to account for greater shares. Where Group C communities encountered higher water levels, certain patches present in wetter habitats saw increases in the role played by species characteristic for class Bidentetea. The sorption capacities of soils here decreased, while values for the C: N ratio rose. Tree and shrub species came to be fewer in number as numbers of undergrowth species rose. There were also increases in the roles of species characterising moist verges (Galio-Urticenea), as well as geophytes. Group D communities likewise encountered rising groundwater levels, but did not seem to experience directional change otherwise, within their phytocoenoses. The sorption capacity of their soils nevertheless decreased. Overall, it was possible to note increases over the period in question when it came to numbers of species present in the tree, undergrowth and bryophyte layers. However, while the role of species characteristic for class Nardo-Callunetea increased, that of Trifolio-Geranietea species declined. And, while correlations between vegetation and soil characteristics proved to be different for each of the four groups of communities, there was no precluding model parameters differing significantly from one year of measurement to another.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


Primates ◽  
2014 ◽  
Vol 55 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Joana Sousa ◽  
Catarina Casanova ◽  
André V. Barata ◽  
Cláudia Sousa

Author(s):  
C. Youmans ◽  
R. Moore

Several important environmental factors which affect the dynamics of pocket gopher populations have been identified: water content at peak snowpack and depth of snow in spring (Hansen and Ward, 1966; Reid, 1973); weather and Its influence on annual food supplies and cover (Howard and Childs, 1959); production of annual and perennial forbs (Keith et al., 1959; Tietjen et al., 1967); and ground water levels and snow depths (Ingles, 1949; Hansen, 1962). A need for specific information on pocket gophers in Pelican Valley, Yellowstone National Park arose from interest in interactions between grizzly bears (Ursus arctos horribilis) and northern pocket gophers (Thomomys talpoides). Mealey (1975) and Graham (1978) suggested that pocket gophers and their caches may serve as seasonally important food items for grizzlies in Yellowstone National Park.


2021 ◽  
Author(s):  
Calla Gould-Whaley ◽  
Russell Drysdale ◽  
Jan-Hendrick May ◽  
John Hellstrom ◽  
Hai Cheng ◽  
...  

<p>Australia is the driest continent outside of Antarctica yet relatively little is known about its long-term moisture history. Many local palaeoclimate archives suffer preservation problems, particularly in the arid centre of the continent, where weathering and erosion leave behind an incomplete record. In an attempt to redress the paucity of arid-zone palaeoclimate records, we investigate ‘pendulites’, subaqueous speleothems that grow episodically according to fluctuations in local groundwater levels. At Mairs Cave (central Flinders Ranges, South Australia), pendulites have formed around stalactites. During the first sustained episode of drowning, the stalactite is veneered by subaqueous calcite, sealing it and preventing further stalactitic growth after water levels fall. Once sealed, the pendulites only record periods of persistent drowning, assumed to correspond to major pluvial episodes.</p><p>Age data from two pendulite samples collected from close to the ceiling where the highest water levels have reached reveal two main groundwater ‘high-stand’ phases centred on ~67 and ~48 ka, coincident with Southern Hemisphere summer insolation maxima. This suggests that precession-driven southward migration of the ITCZ resulted in regular and persistent incursions of tropical air masses to the central Flinders Ranges. Trace element, stable isotope and growth-rate changes reveal that these orbitally controlled growth intervals are superimposed by regional climate responses to Dansgaard-Oeschger and Heinrich events. The results from Mairs Cave shed new light on the moisture history of central Australia, in particular the competing influences of tropical and middle-latitude circulation systems. This provides a precisely dated regional palaeoclimate template for reconstructing ecosystem changes, understanding human migration/dispersal patterns of the first Australians, and the progressive demise of megafauna. We also highlight the utility of subaqueous speleothems more generally as important archives for investigating arid-zone palaeoclimate.</p>


2020 ◽  
Vol 12 (9) ◽  
pp. 1362 ◽  
Author(s):  
Christine M. Albano ◽  
Kenneth C. McGwire ◽  
Mark B. Hausner ◽  
Daniel J. McEvoy ◽  
Charles G. Morton ◽  
...  

Dryland riparian areas are under increasing stress due to expanding human water demands and a warming climate. Quantifying responses of dryland riparian vegetation to these pressures is complicated by high climatic variability, which can create strong, transient changes in vegetation vigor that could mask other disturbance events. In this study, we utilize a 34-year archive of Landsat satellite data to (1) quantify the strength and timescales of vegetation responses to interannual variability in drought status and (2) isolate and remove this influence to assess resultant trends in vegetation vigor for riparian areas across the state of Nevada, the driest state in the USA. Correlations between annual late-summer Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation–Evapotranspiration Index (SPEI) were calculated across a range of time periods (varying timing and durations) for all riparian pixels within each of the 45 ecoregions, and the variability of these values across the study area is shown. We then applied a novel drought adjustment method that used the strongest SPEI–NDVI timescale relationships for each ecoregion to remove the influence of interannual drought status. Our key result is a 30 m resolution map of drought-adjusted riparian NDVI trends (1985–2018). We highlight and describe locations where impacts of invasive species biocontrol, mine water management, agriculture, changing water levels, and fire are readily visualized with our results. We found more negatively trending riparian areas in association with wide valley bottoms, low-intensity agricultural land uses, and private land ownerships and more positive trends in association with narrow drainages, public lands, and surrounding perennial water bodies (an indication of declining water levels allowing increased vegetative cover). The drought-adjusted NDVI improved the statistical significance of trend estimates, thereby improving the ability to detect such changes. Results from this study provide insight into the strength and timescales of riparian vegetation responses to drought and can provide important information for managing riparian areas within the study area. The novel approach to drought adjustment is readily transferrable to other regions.


1999 ◽  
Vol 3 (3) ◽  
pp. 353-361 ◽  
Author(s):  
J. A. Butterworth ◽  
R. E. Schulze ◽  
L. P. Simmonds ◽  
P. Moriarty ◽  
F. Mugabe

Abstract. To evaluate the effects of variations in rainfall on groundwater, long-term rainfall records were used to simulate groundwater levels over the period 1953-96 at an experimental catchment in south-east Zimbabwe. Two different modelling methods were adopted. Firstly, a soil water balance model (ACRU) simulated drainage from daily rainfall and evaporative demand; groundwater levels were predicted as a function of drainage, specific yield and water table height. Secondly, the cumulative rainfall departure method was used to model groundwater levels from monthly rainfall. Both methods simulated observed groundwater levels over the period 1992-96 successfully, and long-term simulated trends in historical levels were comparable. Results suggest that large perturbations in groundwater levels area a normal feature of the response of a shallow aquifer to variations in rainfall. Long-term trends in groundwater levels are apparent and reflect the effect of cycles in rainfall. Average end of dry season water levels were simulated to be almost 3 m higher in the late 1970s compared to those of the early 1990s. The simulated effect of prolonged low rainfall on groundwater levels was particularly severe during the period 1981-92 with a series of low recharge years unprecedented in the earlier record. More recently, above average rainfall has resulted in generally higher groundwater levels. The modelling methods described may be applied in the development of guidelines for groundwater schemes to help ensure safe long-term yields and to predict future stress on groundwater resources in low rainfall periods; they are being developed to evaluate the effects of land use and management change on groundwater resources.


Author(s):  
Roy Bengis ◽  
Danny Govender ◽  
Emily Lane ◽  
Jan Myburgh ◽  
Paul Oberholster ◽  
...  

Over the past decade, several clustered, multispecies, wildlife mortality events occurred in the vicinity of two man-made earthen dams in the southern and south central regions of the Kruger National Park, South Africa. On field investigation, heavy cyanobacterial blooms were visible in these impoundments and analysis of water samples showed the dominance of Microcystis spp. (probably Microcystis aeruginosa). Macroscopic lesions seen at necropsy and histopathological lesions were compatible with a diagnosis of cyanobacterial intoxication. Laboratory toxicity tests and assays also confirmed the presence of significant levels of microcystins in water from the two dams. These outbreaks occurred during the dry autumn and early winter seasons when water levels in these dams were dropping, and a common feature was that all the affected dams were supporting a large number of hippopotamuses (Hippopotamus amphibius). It is hypothesised that hippopotamus’ urine and faeces, together with agitation of the sediments, significantly contributed to internal loading of phosphates and nitrogen – leading to eutrophication of the water in these impoundments and subsequent cyanobacterial blooms. A major cause for concern was that a number of white rhinoceros (Ceratotherium simum) were amongst the victims of these bio-intoxication events. This publication discusses the eco-epidemiology and pathology of these clustered mortalities, as well as the management options considered and eventually used to address the problem.


Water SA ◽  
2018 ◽  
Vol 44 (1 January) ◽  
Author(s):  
JE Cobbing

The Grootfontein Aquifer, part of the important North West dolomite aquifers, supplies about 20% of Mahikeng’s domestic water needs. Over-abstraction caused the large natural spring draining the aquifer to disappear in 1981, and groundwater levels have since fallen nearly 30 m in the vicinity of the former spring. Analysis of water levels and a water balance using recent assessments of groundwater abstractions confirm past work describing the hydrogeological functioning of the aquifer, and suggest that current abstractions need to fall by between 19 and 36 ML/day (7 and 13 Mm3/a) to bring the aquifer back into longterm balance. Continued over-abstraction at Grootfontein implies increasing risk to Mahikeng’s water supply, and illuminates the larger challenge of ensuring groundwater use in the North West dolomites that is sustainable and in the public interest.


Sign in / Sign up

Export Citation Format

Share Document