scholarly journals Accelerated climatic testing of composite coatings on AMg3 aluminum alloy in salt spray medium

Author(s):  
В.С. ФИЛОНИНА ◽  
К.В. НАДАРАИА ◽  
А.С. ГНЕДЕНКОВ ◽  
И.М. ИМШИНЕЦКИЙ ◽  
Д.В. МАШТАЛЯР ◽  
...  

Представлены результаты ускоренных климатических испытаний композиционных полимерсодержащих покрытий на сплаве алюминия АМг3. Выявлено положительное влияние импрегнированного в поры ПЭО-покрытия композиционного материала на смачиваемость и коррозионную стойкость исследуемых образцов в условиях долговременного воздействия соляного тумана. Наиболее высокую коррозионную стойкость продемонстрировали образцы с четырехкратным нанесением ультрадисперсного политетрафторэтилена. The results of accelerated climatic tests of composite polymer-containing coatings on the AMg3 aluminum alloy are presented in the paper. According to the results of the studies carried out, a positive effect of the penetrated composite material into the pores of a PEO-coating on the wettability and corrosion resistance of the test samples under conditions of long-term exposure to salt fog has been revealed. The highest corrosion resistance was demonstrated by samples with a fourfold (СС-4x) application of superdispersed polytetrafluoroethylene.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4737
Author(s):  
Piotr Malczyk ◽  
Tilo Zienert ◽  
Florian Kerber ◽  
Christian Weigelt ◽  
Sven-Olaf Sauke ◽  
...  

In this study, a novel metal matrix composite based on 60 vol% 316L stainless steel and 40 vol% MgO manufactured by powder metallurgy technology was developed. The corrosion resistance of the developed steel–MgO composite material against molten aluminum alloy AlSi7Mg0.3 was investigated by means of wettability tests and long-term crucible corrosion tests. The wettability tests were carried out using the sessile drop method with the capillary purification technique in a hot-stage microscope (HSM). Static corrosion tests were performed in molten aluminum alloy at 850 °C for 168 h to evaluate the impact of pre-oxidation of the composite surface on the corrosion resistance. The pre-oxidation of steel–MgO composites was carried out at 850 and 1000 °C for 24 h, based on preliminary investigations using thermogravimetry (TG) and dilatometry. The influence of the pre-oxidation on the composite structure, the corrosion resistance, and the phase formation at the interface between the steel–MgO composite and aluminum alloy was analyzed using SEM/EDS and XRD. The impact of the steel–MgO composite material on the composition of the aluminum alloy regarding the type, size, and quantity of the formed precipitations was investigated with the aid of ASPEX PSEM/AFA and SEM/EBSD. It was revealed that the pre-oxidation of the steel–MgO composite at 1000 °C induced the formation of stable MgO-FeO solid solutions on its surface, leading to a significant increase of long-term corrosion resistance against the liquid aluminum alloy.


Alloy Digest ◽  
1954 ◽  
Vol 3 (5) ◽  

Abstract Reynolds R301 is a composite material, constituted of a core of high strength aluminum alloy, clad with a corrosion-resistant aluminum alloy. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-16. Producer or source: Reynolds Metals Company.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 390 ◽  
Author(s):  
Qian Zhao ◽  
Tiantian Tang ◽  
Fang Wang

The development of a self-cleaning and corrosion resistant superhydrophobic coating for aluminum alloy surfaces that is durable in aggressive conditions has attracted great interest in materials science. In the present study, a superphydrophobic film was fabricated on an AA5052 aluminum alloy surface by the electrodeposition of Ni–Co alloy coating, followed by modification with 6-(N-allyl-1,1,2,2-tetrahydro-perfluorodecyl) amino-1,3,5-triazine-2,4-dithiol monosodium (AF17N). The surface morphology and characteristics of the composite coatings were investigated by means of scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle (CA). The corrosion resistance of the coatings was assessed by electrochemical tests. The results showed that the surface exhibited excellent superhydrophobicity and self-cleaning performance with a contact angle maintained at 160° after exposed to the atmosphere for 240 days. Moreover, the superhydrophobic coatings significantly improved the corrosion resistant performance of AA5052 aluminum alloy substrate in 3.5 wt.% NaCl solution.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850074
Author(s):  
YAN SHEN ◽  
PRASANTA K. SAHOO ◽  
YIPENG PAN

In order to enhance the corrosion resistance of mooring chain, the composite coatings are carried out on the surface of 22MnCrNiMo steel for mooring chain by double-pulsed electrodeposition technology using centrifugal force in the rotating device. The microstructure and anti-corrosion performance of the composite coatings have been investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and corrosion resistance of composite coatings in the presence of nano-SiC. The results show that the presence of nano-SiC has a significant effect on the preparation of composite coating during the process. The surface of the coating becomes compact and smooth at a moderate concentration of nano-SiC particles. Furthermore, the best corrosion resistance of the composite coatings can be obtained when the concentration of nano-SiC particles is 2.0[Formula: see text]g.L[Formula: see text] after salt spray treatment.


2017 ◽  
Vol 22 (2) ◽  
pp. 17
Author(s):  
Karín Paucar Cuba ◽  
Hugo Rojas Flores ◽  
Abel Vergara Sotomayor

El estudio de la resistencia a la corrosión del anodizado de una aleación de aluminio (AA6063) en ácido sulfúrico a diferentes tiempos de anodizado: 30, 45 y 60 min. se realizó usando la espectroscopia de impedancia electroquímica (EIE) y el ensayo de niebla salina ácida. (ASTM B287). Los datos obtenidos por EIE y su correlación con los circuitos equivalentes más apropiados permitieron determinar los parámetros asociados a la capa porosa y a la capa barrera del óxido protector formado sobre la superficie del aluminio en estudio. La exposición de las muestras anodizadas durante 250h a una niebla salina ácida permitió observar variaciones en su masa. De los resultados obtenidos por EIE y las pérdidas de masa de las muestras anodizadas se estableció que la película de anodizado de 45 minutos mostró una mayor resistencia a la corrosión en comparación con la obtenida a 60 y 30 min., respectivamente. Palabras clave.- Aluminio, Anodizado, Impedancia electroquímica, Niebla salina ácida. ABSTRACTThe study of the corrosion resistance of anodized on aluminum alloy (AA6063) in sulfuric acid to different times: 30, 45 and 60 min. was performed using electrochemical impedance spectroscopy (EIS) and the acid salt spray test (ASTM B287). The EIS’data and its correlation with the most appropriate equivalent circuits allowed to determine the parameters associated with the porous layer and the oxide layer protective barrier formed on the aluminum surface under study. Exposure of the samples anodized for a 250h salt spray acid allowed to observe changes in their mass. From the results obtained by EIS and the mass losses of the anodized samples was established that the anodized film of 45 minutes showed higher corrosion resistance compared to that obtained at 60 and 30 min, respectively. Keywords.- Aluminum, Anodized, Electrochemical impedance, Acid salt spray.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Feisen Wang ◽  
Sifei Ai ◽  
Qian Wang ◽  
Yinfen Cheng ◽  
Haiqi Huang ◽  
...  

Purpose The purpose of this paper is to promote the corrosion resistance of the 5083-111H aluminum alloy by laser cleaning. Design/methodology/approach Laser with 2 ns pulse width was adopted in this project and the corrosion resistance of cleaned samples was tested by copper-accelerated salt spray (CASS). The surface morphology, elemental composition and distribution were then characterized by SEM. Moreover, surface morphology, elemental composition and distribution were also tested. Findings Results suggested a higher corrosion resistance was successfully obtained by laser cleaning. Compared with samples cleaned by 2000 grit sandpaper, mechanical cleaning resulted in a 53% larger height difference between the peak and valley. The content of the oxygen is 8.85% on the surface cleaned mechanically and the distribution is dependent on the distribution of aluminum whereas that of the laser cleaning sample is 24.41% and the distribution existed even in the Al-poor area. Originality/value In this project, the 2-ns laser cleaning was proved to have the capability to remove the oxide layer on the aluminum alloy surface while retaining an excellent corrosion resistance and smooth surface. Meanwhile, a thorough elemental distribution and smaller grain size lead to a smaller difference in elemental concentration. This retards the diffusion of oxygen into the substrate and hence increases the corrosion resistance of the surface.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 505
Author(s):  
Xinqiang Lu ◽  
Shouren Wang ◽  
Tianying Xiong ◽  
Daosheng Wen ◽  
Gaoqi Wang ◽  
...  

Two composite coatings, Zn65Al15Mg5ZnO15 and Zn45Al35Mg5ZnO15, were prepared by the cold spray technique and were found to be compact, with no pits or cracks, based on scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) investigations. The results of the neutral salt spray (NSS) and electrochemical tests showed that the two composite coatings possess a suitable corrosion performance. However, the Zn45Al35Mg5ZnO15 composite coatings were more corrosion resistant and allowed a better long-term stability. In addition, they were found to exhibit the best wear resistance and photocatalytic degradation efficiency.


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12138-12145 ◽  
Author(s):  
Zong-wei Jia ◽  
Wan-chang Sun ◽  
Fang Guo ◽  
Ya-ru Dong ◽  
Xiao-jia Liu

Ni–Co–Al2O3 composite coatings were prepared by pulsed electrodeposition and electrophoresis–electrodeposition on aluminum alloy.


2015 ◽  
Vol 787 ◽  
pp. 426-430 ◽  
Author(s):  
Jason Christopher Jolly ◽  
V. Karthik Srinivas ◽  
A.K. Lakshminarayanan

Magnesium alloys are widely used in applications where weight reduction is of primary importance. MgAZ91D is an Mg-Al-Zn alloy and its application in the automotive sector is limited by its poor corrosion resistance. Recent advances in solid state processing techniques have made it easier to modify the mechanical and corrosion characteristics of various alloys. Friction stir processing (FSP) is such a solid-state process for surface and sub-surface modification, which increases the microstructural densification, thereby producing fine and equiaxed grains. Through this work, an attempt was made to analyse the effect of friction stir processing on the corrosion resistance of the alloy in an enclosed salt spray chamber. Micro-analysis tools like FESEM and EDS are used to supplement our results. It is seen that, FSP significantly contributes to the increase in the corrosion resistance by homogenising the distribution of α and β phases and hence making the use of the alloy more practical in moisture rich environments.


2020 ◽  
Vol 161 ◽  
pp. 110143 ◽  
Author(s):  
Yusheng Ding ◽  
Xiaolan Wu ◽  
Kunyuan Gao ◽  
Cheng Huang ◽  
Xiangyuan Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document