scholarly journals Resistance and Virulence Features in Carbapenem-resistant Acinetobacter baumannii Community Acquired and Nosocomial Isolates in Romania

2019 ◽  
Vol 70 (10) ◽  
pp. 3502-3507

We aimed to identify the virulence and antimicrobial resistance features in Carbapenem Resistant Acinetobacter baumannii (CRAB) strains isolated from hospital settings and compare them with those isolated in the same period of time from community acquired (CA) infections in Bucharest, south of Romania. A total number of 93 A. baumannii strains were isolated in majority from hospitalized patients and from CA infections. The resistance and virulence mechanisms of the strains were characterized by phenotypic and genotypic methods. The antibiotic resistance profiles in H and CA A. baumannii isolates revealed high percentages of carbapenem-resistance in both H and CA isolates. The ciprofloxacin resistance was found very closed in both types of isolates (84%/83.33%). CRAB H and CA isolates revealed the intrinsec carbapenemase OXA-51and the acquired carbapenemases OXA-23, OXA-24, IMP,and VIM-2. The blaOXA-23 gene was identified in different plasmid types (GR2-Aci1, GR6-pACICU2). rep135040, p3S18 and Aci6 in H A. baumannii isolates. The most frequently expressed virulence factor was lipase and DN-ase. OXA-51-like alleles corresponding to the two main sequence groups were identified as blaOXA66 (63.63% of the isolates) and respectively, blaOXA-69 (38.39%) and revealed the corresponding type of ompAand csuE sequence grouping. AphA6 (24%/16.6%), AphA1 (16%/16.6%) and aadB (9.3%/5.5%) genes were responsible for aminoglycosides resistance. Our survey revealed a high drug resistance in A. baumannii isolates. Different plasmid groups containing CRAB isolates may facilitate the blaOXA23 dissemination. Keywords: carbapenem resistance, virulence, community acquired, nosocomial infections

2019 ◽  
Vol 70 (10) ◽  
pp. 3502-3507
Author(s):  
Irina Gheorghe ◽  
Violeta Corina Cristea ◽  
Luminita Marutescu ◽  
Marcela Popa ◽  
Carmen Murariu ◽  
...  

We aimed to identify the virulence and antimicrobial resistance features in Carbapenem Resistant Acinetobacter baumannii (CRAB) strains isolated from hospital settings and compare them with those isolated in the same period of time from community acquired (CA) infections in Bucharest, south of Romania. A total number of 93 A. baumannii strains were isolated in majority from hospitalized patients and from CA infections. The resistance and virulence mechanisms of the strains were characterized by phenotypic and genotypic methods. The antibiotic resistance profiles in H and CA A. baumannii isolates revealed high percentages of carbapenem-resistance in both H and CA isolates. The ciprofloxacin resistance was found very closed in both types of isolates (84%/83.33%). CRAB H and CA isolates revealed the intrinsec carbapenemase OXA-51and the acquired carbapenemases OXA-23, OXA-24, IMP,and VIM-2. The blaOXA-23 gene was identified in different plasmid types (GR2-Aci1, GR6-pACICU2). rep135040, p3S18 and Aci6 in H A. baumannii isolates. The most frequently expressed virulence factor was lipase and DN-ase. OXA-51-like alleles corresponding to the two main sequence groups were identified as blaOXA66 (63.63% of the isolates) and respectively, blaOXA-69 (38.39%) and revealed the corresponding type of ompAand csuE sequence grouping. AphA6 (24%/16.6%), AphA1 (16%/16.6%) and aadB (9.3%/5.5%) genes were responsible for aminoglycosides resistance. Our survey revealed a high drug resistance in A. baumannii isolates. Different plasmid groups containing CRAB isolates may facilitate the blaOXA23 dissemination.


Author(s):  
Rabia Arshad

Background: Antimicrobial resistance is one of the research priorities of health organizations due to increased risk of morbidity and mortality. Outbreaks of nosocomial infections caused by carbapenem-resistant Acinetobacter Baumannii (CRAB) strains are at rise worldwide. Antimicrobial resistance to carbapenems reduces clinical therapeutic choices and frequently led to treatment failure. The aim of our study was to determine the prevalence of carbapenem resistance in A. baumannii isolated from patients in intensive care units (ICUs). Methods: This cross-sectional study was carried out in the Department of Microbiology, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Centre (JPMC), Karachi, from December 2016 to November 2017. Total 63 non-repetitive A. baumannii were collected from the patients’ specimens, admitted to medical and surgical ICUs and wards of JPMC, Karachi. The bacterial isolates were processed according to standard microbiological procedures to observe for carbapenem resistance. SPSS 21 was used for data analysis. Results: Out of the 63 patients, 40 (63.5%) were male. The age of the patient ranged from 15-85 year, with average of 43 year. 34.9% patients had been hospitalized for 3 days. Chronic obstructive pulmonary disease was present in highest number with average of 58.7% for morbidity. Number of patients on mechanical ventilation was highest (65.1%). All isolates were susceptible to colistin. The resistance to ampicillin-sulbactam, ceftazidime, ciprofloxacin, amikacin, piperacillin- tazobactam and meropenem was 82.5%, 81%, 100%, 87.3%, 82.5% and 82% respectively. Out of 82% CRAB, 77% were obtained from ICUs. Conclusion: This study has revealed the high rate of carbapenem resistance in A. baumannii isolates in ICUs thus leaving behind limited therapeutic options.


Author(s):  
Dunja Said ◽  
Niklas Willrich ◽  
Olaniyi Ayobami ◽  
Ines Noll ◽  
Tim Eckmanns ◽  
...  

Abstract Background Carbapenem-resistant Acinetobacter baumannii complex (CRABC) has globally emerged as a serious public health challenge. This study aimed to describe epidemiological trends and risk factors of carbapenem resistance in A. baumannii complex isolates in Germany between 2014 and 2018. Methods We analysed 43,948 clinical A. baumannii complex isolates using 2014 to 2018 data from the German Antimicrobial Resistance Surveillance system. We applied descriptive statistics and uni- and multivariable regression analyses to investigate carbapenem resistance in A. baumannii complex isolates. Results The proportion of carbapenem resistance in clinical A. baumannii complex isolates declined from 7.6% (95% confidence interval [95% CI] 4.4–12.7%) in 2014 to 3.5% (95% CI 2.5–4.7%) in 2018 (adjusted OR [aOR] 0.85 [95% CI 0.79–0.93, p ≤ 0.001]). Higher mean CRABC proportions for 2014 to 2018 were observed in secondary care hospitals (4.9% [95% CI 3.2–7.5%], aOR 3.6 [95% CI 2.4–5.3, p ≤ 0.001]) and tertiary care hospitals (5.9% [95% CI 3.0–11.2%], aOR 5.4 [95% CI 2.9–10.0, p ≤ 0.001) compared to outpatient clinics (1.3% [95% CI 1.1–1.6%]). CRABC proportions in hospitals varied between German regions and ranged between 2.4% (95% CI 1.6–3.5%) in the Southeast and 8.8% (95% CI 4.2–17.3%) in the Northwest. Lower CRABC proportions were observed in younger patients (< 1 year: 0.6% [95% CI 0.2–1.3%]; 1–19 years: 1.3% [95% CI 0.7–2.5%]) than adults (20–39 years: 7.7% [95% CI 4.4–13.0%]; 40–59 years: 6.2% [4.2–8.9%]; 60–79 years: 5.8% [95% CI 4.0–8.3%]). In the 20–39 year old patient age group, CRABC proportions were significantly higher for men than for women (14.6% [95% CI 8.6–23.6%] vs. 2.5% [95% CI 1.3–4.5%]). A. baumannii complex isolates from lower respiratory infections were more likely to be carbapenem-resistant than isolates from upper respiratory infections (11.4% [95% CI 7.9–16.2%] vs. 4.0% [95% CI 2.7–6.0%]; adjusted OR: 1.5 [95% CI 1.2–1.9, p ≤ 0.001]). Conclusions In contrast to many other regions worldwide, carbapenem resistance proportions among clinical A. baumannii complex isolates are relatively low in Germany and have declined in the last few years. Ongoing efforts in antibiotic stewardship and infection prevention and control are needed to prevent the spread of carbapenem-resistant A. baumannii complex in Germany.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1054
Author(s):  
Nalumon Thadtapong ◽  
Soraya Chaturongakul ◽  
Sunhapas Soodvilai ◽  
Padungsri Dubbs

Resistance to the last-line antibiotics against invasive Gram-negative bacterial infection is a rising concern in public health. Multidrug resistant (MDR) Acinetobacter baumannii Aci46 can resist colistin and carbapenems with a minimum inhibitory concentration of 512 µg/mL as determined by microdilution method and shows no zone of inhibition by disk diffusion method. These phenotypic characteristics prompted us to further investigate the genotypic characteristics of Aci46. Next generation sequencing was applied in this study to obtain whole genome data. We determined that Aci46 belongs to Pasture ST2 and is phylogenetically clustered with international clone (IC) II as the predominant strain in Thailand. Interestingly, Aci46 is identical to Oxford ST1962 that previously has never been isolated in Thailand. Two plasmids were identified (pAci46a and pAci46b), neither of which harbors any antibiotic resistance genes but pAci46a carries a conjugational system (type 4 secretion system or T4SS). Comparative genomics with other polymyxin and carbapenem-resistant A. baumannii strains (AC30 and R14) identified shared features such as CzcCBA, encoding a cobalt/zinc/cadmium efflux RND transporter, as well as a drug transporter with a possible role in colistin and/or carbapenem resistance in A. baumannii. Single nucleotide polymorphism (SNP) analyses against MDR ACICU strain showed three novel mutations i.e., Glu229Asp, Pro200Leu, and Ala138Thr, in the polymyxin resistance component, PmrB. Overall, this study focused on Aci46 whole genome data analysis, its correlation with antibiotic resistance phenotypes, and the presence of potential virulence associated factors.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Nureen Zahra ◽  
Basit Zeshan ◽  
Muhammad Mubeen Ali Qadri ◽  
Musarat Ishaq ◽  
Muhammad Afzal ◽  
...  

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) is a significant nosocomial pathogen, causing serious threats concerning community-wide outbreaks globally, as well as in Pakistan. Antimicrobial resistance in A. baumannii is increasing day by day. Objectives: The study aimed to find out the antibiotic resistance (AMR) patterns and evaluate the AMR genes in clinical isolates from patients admitted to the surgical Intensive Care units (ICUs) at different hospitals in Lahore, Pakistan. Methods: A total of 593 clinical specimens were collected from patients admitted to the surgical ICUs of three different local hospitals in Lahore, Pakistan. From these samples, a total of 90 A. baumannii isolates were identified and further investigated to observe phenotypic resistance patterns and detect carbapenemases resistance genes. Results: The results showed that phenotypic resistance against amikacin was 27.2%, ceftriaxone 100%, ceftazidime 27.2%, cefepime 63.3%, ciprofloxacin and co-trimoxazole 100%, gentamicin 40%, imipenem 22.2%, meropenem 21.1%, piperacillin-tazobactam 27.2%, tigecycline 27.2%, and tetracycline 63.3%. All A. baumannii isolates were found to be sensitive to colistin (CT), polymixin-B (PB), and tobramycin (TOB). The PCR amplification of carbapenemases genes revealed the prevalence of blaOXA-23, blaOXA-51, and blaOXA-40 in 73, 90, and 64.4% of the isolates, respectively, along with blaNDM1 (92.2%), blaVIM (40%), blaIMP (90%), ISAba1 (85.5%), sul1 (16.6%), sul2 (20%), armA (32.2%), and PER-1 (12%) while the blaOXA-24 and blaOXA-58 genes were not detected in the isolates. The sequence analysis of the blaOXA-23 and blaOXA-51 genes showed 98% and 95% similarity with previously reported sequences in the GenBank database. Conclusions: The present study indicated that the emergence of high carbapenem resistance in CRAB isolates has increased, which may pose serious limitations in the choice of drugs for nosocomial infections.


2016 ◽  
Vol 54 (7) ◽  
pp. 1700-1710 ◽  
Author(s):  
Thomas J. Gniadek ◽  
Karen C. Carroll ◽  
Patricia J. Simner

The non-glucose-fermenting Gram-negative bacilliPseudomonas aeruginosaandAcinetobacter baumanniiare increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF.


2021 ◽  
Author(s):  
Marjan Khorshidi Zadeh ◽  
Sue Yee Yiu ◽  
Jacquelynn N Nguyen ◽  
Gabriela L Garza ◽  
Joy Waite-Cusic ◽  
...  

Wastewater treatment utilities are considered one of the main sources and reservoirs of antimicrobial resistance. The objective of this study was to determine the diversity and prevalence of antibiotic-resistant Escherichia coli in wastewater treatment systems across the state of Oregon. Influent, secondary effluent, final effluent, and biosolids were collected from 17 wastewater treatment utilities across Oregon during the winter and summer seasons of 2019 and 2020 (n = 246). E. coli strains were recovered from samples by culturing on mTEC, followed by confirmation with MacConkey with MUG agar plates. Antibiotic susceptibility of 1143 E. coli isolates against 8 antibiotics were determined, and resistance profiles and indices were analyzed between utilities, seasons, and flows. Antibiotic resistance phenotypes were detected in 31.6% of the collected E. coli isolates. Among those antibiotic-resistant E. coli isolates, multi-drug resistance (i.e., resistance to three or more classes of antibiotics) was harbored by 27.7% with some strains showing resistance to up to six classes of antibiotics. The most prevalent resistance was to ampicillin (n = 207) and the most common combinations of multi-drug resistance included simultaneous resistances to ampicillin, streptomycin, and tetracycline (n = 49), followed by ampicillin, streptomycin, and sulfamethoxazole/trimethoprim (n = 46). Significant correlations were observed between resistance to sulfamethoxazole/trimethoprim and resistances to ampicillin, ciprofloxacin, and tetracycline (p < 0.001). A small percentage (1.1%) of the E. coli isolates displayed extended-spectrum beta lactamase (ESBL) activity and a single isolate carried resistance to imipenem. Compared to wastewater influent, ciprofloxacin resistance was significantly more prevalent in biosolids (p <0.05) and tetracycline resistance was significantly lower in effluent (p <0.05). Seasonal impact on antibiotic-resistant E. coli in wastewater influent was observed through significantly higher multiple antibiotic resistance (MAR) index, ampicillin resistance prevalence, and ciprofloxacin resistance prevalence in summer compared to winter (p < 0.05). This state-wide study confirms the widespread distribution of antibiotic-resistant, multi-drug resistant, and extended-spectrum beta lactamase-producing E. coli in wastewater systems across different flows and seasonal variations, making them the recipients, reservoirs, and sources of antimicrobial resistance.


2020 ◽  
Author(s):  
Xingchen Bian ◽  
Xiaofen Liu ◽  
Xuefei Zhang ◽  
Xin Li ◽  
Jing Zhang ◽  
...  

Abstract Background Acinetobacter baumannii is a common nosocomial pathogen that poses a huge threat to global health. Owing to the severity of A. baumannii infections, it became necessary to investigate the epidemiological characteristics of A. baumannii in Chinese hospitals and ascertain the reasons for the high antibiotic resistance rate and severe infections. This study aimed to investigate the epidemiologic and genetic characteristics of A. baumannii isolated from patients with hospital acquired pneumonia (HAP), bloodstream infection (BSI) and urinary tract infection (UTI) in China and uncover potential mechanisms for multi-drug resistance using whole genome sequencing. Results All isolates were classified into one of two primary clades. Clonal complex 208 (CC208) mainly consisted of ST195 (32%) and ST208 (24.6%). CC208 and non-CC208 isolates had carbapenem resistance rates of 96.2% and 9.1%, respectively. UTI isolates possessed the greatest number of unique genes enriched in 'Replication, recombination, and repair' and ‘Amino acid transport and metabolism’ although the numbers of genes specific to HAP-isolates were fewer. No specific virulence gene was identified when comparing isolates from the three infection sites, but most isolates possessed virulence factors related to polysaccharide biosynthesis, capsular polysaccharide synthesis and motility. ABGRI1 antibiotic resistance islands were responsible for streptomycin, tetracycline and sulfonate resistance. The blaOXA−23 gene was the most probable cause for carbapenem resistance, although the blaOXA−66 gene with nonsynonymous SNPs (F82L, I129L) was not. Conclusions Our study illustrates epidemiological and genomic characteristics of A. baumannii from HAP, BSI and UTI in China and reveals possible molecular mechanisms of multi-drug resistance. The differential resistance, virulence and genetic features provide supportive evidence for the diverse sites of infection caused by A. baumannii.


2015 ◽  
Vol 48 (6) ◽  
pp. 699-705 ◽  
Author(s):  
Giselle Dall Cortivo ◽  
Andréia Gutberlet ◽  
Jéssica Augustini Ferreira ◽  
Leslie Ecker Ferreira ◽  
Roseneide Campos Deglmann ◽  
...  

2021 ◽  
Vol 71 (11) ◽  
pp. 2576-2581
Author(s):  
Saima Ishtiaq ◽  
Sidrah Saleem ◽  
Abdul Waheed ◽  
Arslan Ahmed Alvi

Objective: To evaluate carbapenem resistance and to detect blaOXA-23 and blaOXA-51 genes in carbapenem-resistant acinetobacter baumanii isolates recovered from patients having pneumonia secondry to ventilation. Methods: The cross-sectional study was conducted from July 2017 to June 2018 at the Department of Microbiology, University of Health Sciences, Lahore, Pakistan, and comprised endotracheal aspirates / tracheobroncheal lavage samples from patients irrespective of age and gender who developed pneumonia after being on the ventilator for 48 hrs at the Combined Military Hospital, and Jinnah Hospital, Lahore.  The samples were inoculated on MacConkey and blood agar and aerobically incubated at a temperature of 370C for 18-24 hours. The isolated organisms were further assessed by standard morphological, cultural and biochemical profile. Antibiotic susceptibility was done by Kirby-Bauer disc diffusion method. Carbapenem-resistant acinetobacter baumannii were checked for carbapenemase production using Modified Hodge Test. Conventional polymerase chain reaction and agarose gel electrophoreses were performed to detect blaOXA-23 and blaOXA-51 genes. Data was analysed using SPSS 17. Results: Out of 157 samples, 92(58.6%) yielded growth of bacteria, and, among them, 39(42.4%) were identified as acinetobacter baumannii. All (100%) acinetobacter baumannii cases showed resistance to carbapenem, were producing carbapenemase enzyme, and were positive for blaOXA-51 gene. The blaOXA-23 gene was amplified in 38(97.4%) isolates. Conclusion: BlaOXA-23 gene appeared to be the major cause of carbapenem resistance. Continuous...


Sign in / Sign up

Export Citation Format

Share Document