scholarly journals Characterization and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Leaves Extract of Artemisia sieberi and Calotropis procera

2021 ◽  
Vol 72 (2) ◽  
pp. 76-82
Author(s):  
Saleh H. Salmen ◽  
Nadiah Matluq Alkammash ◽  
Tahani Awad Alahmadi ◽  
Sulaiman Ali Alharbi

The prevalence of antibiotic-resistant bacteria has increased recently leading to the need for novel, natural antibacterial agents such as plant-synthesized silver nanoparticles. Such synthesis is safe, cheap, rapid, non-toxic and environmentally friendly. In this study, characterization of biosynthesized silver nanoparticles from extracts of A. sieberi and C. procera was carried out using transmission electron microscopy, fourier transform infrared and energy dispersive x-ray analysis. Spherical nanoparticles with an average size was ~10 nm for A. sieberi and ~14 nm for C. procera were synthesised; synthesis was most effective using A. sieberi. Antibacterial activity of silver nanoparticles was carried out using the agar-diffusion method and by determination of the minimum inhibitory concentration. Biosynthesized silver nanoparticles showed antibacterial activity against Staphylococcus aureus, MRSA, Salmonella typhimurium and Escherichia coli, with silver nanoparticles extracts from A. sieberi being the most antibacterial.

2018 ◽  
Vol 7 (3) ◽  
pp. 1570
Author(s):  
Nguyen Phung Anh ◽  
Truong Thi Ai Mi ◽  
Duong Huynh Thanh Linh ◽  
Nguyen Thi Thuy Van ◽  
Hoang Tien Cuong ◽  
...  

A rapid way of synthesizing silver nanoparticles (AgNPs) by treating Ag+ ions with a green Fortunella Japonica (F.J.) extract as a combined reducing and stabilizing agent was investigated. The reaction solutions were monitored using UV-Vis spectroscopy, the size and shape of crystals were determined by scanning electron microscopy and transmission electron microscopy, the crystalline phases of AgNPs were presented by X–ray diffraction, and the relation of nanoparticles with Fortunella Japonica extract was confirmed using fourier transform infrared spectroscopy. The results indicated that no formation of AgNPs had taken place in the dark during 24 hours at room temperature and 40 oC. Meanwhile, it was found that the rate of AgNPs formation increased rapidly under the sunlight. The effects of the synthesis factors on the AgNPs formation were investigated. The suitable conditions for the synthesis of AgNPs using F.J. extract were determined as follows: F.J. extract was mixed with AgNO3 1.75 mM solution with the volume ratio of 3.5 AgNO3 solution/1.5 F.J. Extract, stirred 300 rpm for 150 minutes at 40 oC under sunlight illumination. At these conditions, AgNPs showed high crystalline structure with the average size of 15.9 nm. The antibacterial activity of silver nanoparticles was determined by agar well diffusion method against E. coli and B. subtilis bacteria. The green synthesized AgNPs performed high antibacterial activity against both bacteria.  


2019 ◽  
Vol 70 (3) ◽  
pp. 990-992
Author(s):  
Luciana Teodora Rotaru

The last century was marked by efforts to search for natural compounds with antibacterial therapeutic properties, due to the gradual reduction of the number of effective allopathic antibiotics and on the toxic effects of antibiotic residues in animal products. Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. We determined the polyphenolic composition of the tested plant extract by HPLC technique. The aim of this study was to evaluate the antibacterial activity of Vaccinum myrtillus folium (VM-f) ethanolic extract, using the diffusion method on nutritive agar (Kirby-Bauer). We compared the experimental results with the theoretical antibacterial activity calculated with AUTODOCK 4.2.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


2021 ◽  
Vol 5 (3) ◽  
pp. 109-122
Author(s):  
Tuğba Kahraman ◽  
Safiye Elif Korcan ◽  
Recep Liman ◽  
İbrahim Hakkı Ciğerci ◽  
Yaser Acikbas ◽  
...  

Abstract Silver nanoparticles (AgNPs) have been used in a variety of biomedical applications in the last two decades, including antimicrobial, anti-inflammatory, and anticancer treatments. The present study highlights the extracellular synthesis of silver nanoparticles AgNPs using Neopestalotiopsis clavispora MH244410.1 and its antibacterial, antibiofilm, and genotoxic properties. Locally isolated N. clavispora MH244410.1 was identified by Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Optimization of synthesized AgNPs was performed by using various parameters (pH (2, 4, 7, 9 and 12), temperature (25, 35 and 45 °C), and substrate concentration (0.05, 0.1, 0.15, 0.2 and 0.25 mM)). After 72 hours of incubation in dark conditions, the best condition for the biosynthesis of AgNPs was determined as 0.25 mM metal concentration at pH 12 and 35 °C. Fungal synthesized AgNPs were characterized via spectroscopic and microscopic techniques such as Fouirer Transform Infrared Spectrophotometer (FTIR), UV-Visible Spectroscopy, and Transmission Electron Microscopy (TEM). The average size of the AgNPs was determined less than 60 nm using the TEM and Zetasizer measurement system (measured in purity water suspension). The characteristic peak of AgNPs was observed at ~414 nm from UV-Vis results. Antibacterial and genotoxic activity of synthesized AgNPs (0.1, 1, and 10 ppm) were also determined by using the agar well diffusion method and in vivo Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. AgNPs exhibited potential antimicrobial activity against all the tested bacteria (Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa) except Escherichia coli in a dose-dependent manner. AgNPs did not induce genotoxicity in the Drosophila SMART assay. 79.33, 65.47, and 41.95% inhibition of biofilms formed by P. aeruginosa were observed at 10, 1, and 0.1 ppm of AgNPs, respectively. The overall results indicate that N. clavispora MH244410.1 is a good candidate for novel applications in biomedical research.


2018 ◽  
Vol 16 (5) ◽  
pp. 341-348
Author(s):  
On-Anong SOMSAP

Antibiotic resistance bacteria has become an increasing problem now today due to many factors. This study investigates the efficacy of Prismatomeris tetrandra K. Schum root extract as a new source of antibacterial activity for antibiotic resistant bacteria using agar well diffusion method. The results showed that S. aureus TISTR517 exhibited more sensitivity to P. tetrandra K. Schum root extract than other Gram-positive bacteria indicator strains. On the other hand, Gram-negative bacteria exhibited resistance to P. tetrandra K. Schum root extract. The study further showed the activity between P. tetrandra K. Schum root extract and gentamycin (10 µg), it revealed that MRSA142 was resistant to gentamycin (10µg) but sensitive to P. tetrandra K. Schum root extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was evaluated by using S. aureus TISTR517 and MRSA142 as indicator strains. The MIC value was 0.59 mg/mL and 1.17 mg/mL for S. aureus TISTR517 and MRSA142, respectively. MBC assay demonstrated that the MBC value was 9.75 mg/mL and 150 mg/mL for S. aureus TISTR517 and MRSA142 respectively. The mode of action was investigated with the presence of P. tetrandra K. Schum root extract in the culture broth. The action of P. tetrandra K. Schum root extract was revealed of bacteriostatic activity due to the Optical density (OD) at 600 nm and Colony-Forming Units (CFU) of indicator strains were continuously decreased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 205
Author(s):  
Jeong Choi ◽  
Hyon Jung ◽  
Yeon Baek ◽  
Bo Kim ◽  
Min Lee ◽  
...  

In this work, the antibacterial activity of silver nanoparticles (AgNPs) synthesized using Areca catechu extracts against three species of antibiotic-susceptible and three species of resistant bacteria was investigated. The effects of this plant were more promising when compared with other medicinal plants tested. The hydrothermal extract of Areca catechu was mixed with silver nitrate to synthesize AgNPs. The synthesized particle characteristics were analyzed by UV–Vis spectrophotometry, scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FT-IR). Minimum inhibitory concentration and minimum bactericidal concentration tests were conducted to confirm antibacterial activity and the results showed that AgNPs synthesized using Areca catechu extracts effectively inhibited the growth of bacterial species. Moreover, the SEM images of the bacterial species treated with AgNPs synthesized with Areca catechu extracts showed that clusters of AgNPs were attached to the surface of the bacterial cell wall, which could induce destruction of the cell membranes. The results suggest that AgNPs synthesized with Areca catechu extracts have the potential to treat antibiotic-resistant bacteria known as the major cause of nosocomial infections.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Abdullah A. Alarfajj ◽  
Mohammedsaleh Almallahi ◽  
Murugan A. Munusamy ◽  
Mickymaray Suresh ◽  
Wael Alturaiki

Extended-spectrum beta-lactamases (ESBL) are enzymes produced by E. coli like some gram negative bacteria. The patients who are affected by ESBL producing bacteria facing a major problem and they may need different β- lactam antibiotics to treat the infection. But this extensive use of β- lactam antibiotics against ESPLs creating major public health threat.  As an alternative currently many eco- friendly, non-toxic, low cost nanoparticles are synthesizing by biogenic way used as an alternative for the β- lactam antibiotics. In the present study silver nanoparticles (AgNPs) were synthesized using Ayurveda Toothpowder. The synthesized AgNPs were characterized using ultraviolet (UV)-visible (vis) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM) analysis and finally the antibacterial activity was performed against ESBL producing bacteria by well diffusion method. Antibacterial tests against ESPL producing E.coli cells using biogenic synthesized AgNPs showed significant antibacterial effect at low concentration of AgNPs. The results proved that the biogenic synthesised nanoparticles using Toothpowder extract would help to arrest ESBL producing bacteria a


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Manal A. Awad ◽  
W. K. Mekhamer ◽  
Nada M. Merghani ◽  
Awatif A. Hendi ◽  
Khalid M. O. Ortashi ◽  
...  

A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs). The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3). The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS). The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS) nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) in addition to Transmission Electron Microscopy (TEM). The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteriaEscherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteriaStaphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 196-200
Author(s):  
G Amalorpavamary ◽  
G Dineshkumar ◽  
K Jayaseelan

In recent times, plant-mediated synthesis of nanoparticles has garnered wide interest owing to its inherent features such as rapidity, simplicity, eco-friendliness and cheaper costs. For the first time, silver nanoparticles were successfully synthesized using Phyllanthus niruri leaf extract in the current investigation. The silver nanoparticles were characterized by UV–Vis spectrophotometer and the characteristic surface plasmon resonance peak was identified to be 423 nm. The morphology of the silver nanoparticles was characterized by scanning electron microscopy (SEM). The size of the silver nanoparticles was found to be 10-50 nm, with an average size 15 nm.  FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. The antibacterial potential of synthesized AgNPs was compared with that of aqueous extracts of P.niruri by well diffusion method. The AgNPs at 50µl concentration significantly inhibited bacterial growth against A.hydrophila (16 ± 0.09 mm). Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future. Keywords: Phyllanthus niruri, AgNps, Aeromonas hydrophila, Antibacterial Activity.


Sign in / Sign up

Export Citation Format

Share Document