scholarly journals Patterns and paschen-back analogue in the stark-effect for neon

While the Stark-effect has not been studied so extensively as the Zeeman-effect, either in the experiments or in their interpretations, many of the more prominent features have been observed and have received adequate explanation on the quantum theory. Among these may be mentioned the patterns characteristic of the different series in the singlet system of parhelium. The variety of observed patterns in the Stark-effect, as contrasted with the normal Zeeman-effect found for all series of this system, arises from a differential action of the external electric field on the initial and final states, and a breaking down of the usual selection rule for the azimuthal quantum number. Some simplification is brought about, however, by the fact that only the absolute value of the quantum number m has any meaning in the interpretation of these photographs, since the action of the field is the same for right or left-handed motion of the outer electron in its orbit. This results in asymmetrical patterns for all the lines. The number of components observed in the patterns of individual lines of parhelium is in accord with the theoretical view that the vector j (here equal to l ) is resolved along the direction of the applied field to give the integral m values ranging from - j to + j , and that the usual selection rule holds for m . The displacements and intensities are in excellent agreement with the theoretical calculations based on the perturbation theory of quantum mechanics. The spacing of the sub-levels identified by ± m in the initial state is decidedly irregular in the Stark-effect as compared with the normal Zeeman-effect, where the displacements are proportional to m . The Zeeman order of the levels is usually reversed, in fact, and the spacing is uneven. Displacements in the final state are theoretically very small, and have not been observed with certainty. In the Stark-effect for orthohelium (triplet system) the same group of patterns was observed. An explanation of these observations, which is slightly less satisfactory than that obtained with parhelium, has been made by similar methods, neglecting the electron spin. Thus the m values were again given ranges determined in each case by the l of the outer electron, and not by the j for the whole atom. Most of the plates failed to reveal any of the fine structure of the normal orthohelium spectrum.

1984 ◽  
Vol 86 ◽  
pp. 128-131
Author(s):  
J.M. Bizau ◽  
F. Wuilleumier ◽  
P. Gerard ◽  
P. Dhez ◽  
B. Carré ◽  
...  

We have begun a program to measure oscillator strengths of autoionizing resonances that result from a transition in the VUV between a laser excited initial state and a final state in which a core electron is promoted. These measurements demonstrate a new technique to combine synchrotron radiation, laser pumping, and photoelectron spectroscopy.Measurements of the energy positions of autoionizing resonances have been honed to a fine art over the past 50 years. Total cross section measurements and the parameters that describe autoionizing resonances have been determined. Most of these studies have been made from the dipole allowed ground state. Recently autoionizing resonances have been observed from excited initial states and from ion initial states. We have heard several talks, at this meeting which described some of this type of research. In the measurements to be described in this paper, laser radiation is combined with synchrotron radiation, as shown schematicaly in Figure 1, to study the photoionization from excited initial states to continuum final states or to autoionizing final states. Continuum radiation from the Aneau de Collisions d’Orsay (ACO), which is installed at the Universite de Paris-Sud, in Orsay France, is monochromatized by a toroidal grating monochromator (TGM) and is focused by a toroidal output mirror on to a weakly collimated sodium beam emanating from a furnace mounted on the axis of a cylinderical mirror analyzer (CMA). This electron spectrometer is used to study the kinetic energy distribution of the ejected photoelectrons produced by the interaction of the photon beam with the focused synchrotron radiation.


2008 ◽  
Vol 11 (04) ◽  
pp. 565-579
Author(s):  
MAKOTO UCHIDA ◽  
SUSUMU SHIRAYAMA

The nature of the dynamics of opinion formation or zero-temperature Ising models modeled as a decision-by-majority process in complex networks is investigated using eigenmode analysis. The Hamiltonian of the system is defined and estimated by eigenvectors of the adjacency matrix constructed from several network models. The rule of the process is assumed to be equivalent to the minimization of the Hamiltonian. The initial and final states of the dynamics are decomposed on the basis of the eigenvectors. The process and the eigenmodes are analyzed by numerical studies. We show that the magnitude of the coefficient for the largest eigenvector at the initial states is the key determinant for the resulting dynamics. We thus prove that the final state of the dynamics can be estimated by the eigenmodes of the initial state.


2016 ◽  
Vol 40 ◽  
pp. 1660037 ◽  
Author(s):  
Yuxi Pan

The large transverse single spin asymmetries (SSA) of high [Formula: see text] inclusive hadrons produced in polarized proton collisions are usually explained by means of collinear twist-3 multi-parton correlations. In this picture these asymmetries can originate from initial-state twist-3 parton distributions in the polarized proton and/or through the coupling between proton transversity and twist-3 fragmentation functions. The measurement of SSA for forward inclusive hadrons produced in [Formula: see text] collisions out to high transverse momentum helps to examine the validity and interplay of these initial- and final-state models. These models can be further explored by investigating the dependence of the SSA on event topologies. We present our latest status on the measurement of SSA for forward inclusive [Formula: see text] detected within [Formula: see text] in [Formula: see text] = 500 GeV [Formula: see text] collisions as well as its dependence on event topologies. We will also present our analysis of Sivers and Collins asymmetries for forward jet-like events consisting of multi-photon final states. The measurements are based on the data taken in 2011 with integrated luminosity [Formula: see text] 22 [Formula: see text].


2008 ◽  
Vol 17 (03n04) ◽  
pp. 571-576 ◽  
Author(s):  
PHILIPP A. HÖHN ◽  
SUSAN M. SCOTT

It has long been a primary objective of cosmology to understand the apparent isotropy in our universe and to provide a mathematical formulation for its evolution. A promising school of thought for its explanation is quiescent cosmology, which already possesses a mathematical framework, namely the definition of an isotropic singularity, but only for the initial state of the universe. A complementary framework is necessary in order to also describe possible final states of the universe. Our new definitions of an anisotropic future endless universe and an anisotropic future singularity, whose structure and properties differ significantly from those of the isotropic singularity, offer a promising realization for this framework. The combination of the three definitions together may then provides the first complete formalization of the quiescent cosmology concept.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1172-1173
Author(s):  
D. A. Muller ◽  
J. Neaton ◽  
D. R. Haman

Electron energy loss spectroscopy (EELS) probes electronic excitations of a solid on the atomic scale. The widespread availability of first-principles calculations has lead to an explosion of theoretical calculations of EELS spectra. Agreement between theory and experiment is generally reported to be good at the typical energy resolutions in commercial microscopes of 0.7-1.3 eV. However a brief survey of the X-ray absorption literature suggests that the anticipated introduction of monochromators, along with improvements in energy stability, and spectrometer resolution will unmask many more effects that cannot be predicted as precisely as they can be measured.The shape and binding energy of a core excitation is determined by both the ground state electronic structure (initial state effects) and the reponse to the excited electron-hole (final state effects) (Fig. 1). Errors in the initial state, such as the systematic errors in band gaps (and hence band offsets) are inherent in the local density approximation eigenvalues used to simulate EELS spectra.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Christian Bierlich ◽  
Andy Buckley ◽  
Jonathan Butterworth ◽  
Christian Holm Christensen ◽  
Louie Corpe ◽  
...  

First released in 2010, the Rivet library forms an important repository for analysis code, facilitating comparisons between measurements of the final state in particle collisions and theoretical calculations of those final states. We give an overview of Rivet's current design and implementation, its uptake for analysis preservation and physics results, and summarise recent developments including propagation of MC systematic-uncertainty weights, heavy-ion and ep physics, and systems for detector emulation. In addition, we provide a short user guide that supplements and updates the Rivet user manual.


2018 ◽  
Vol 172 ◽  
pp. 05007 ◽  
Author(s):  
Moritz Greif ◽  
Carsten Greiner ◽  
Björn Schenke ◽  
Sören Schlichting ◽  
Zhe Xu

Observations of long rang azimuthal correlations in small collision systems (p+p/A) have triggered an enormous excitement in the heavy-ion community. However, it is presently unclear to what extent the experimentally observed correlations should be attributed to initial state momentum correlations and/or the final state response to the initial state geometry. We discuss how a consistent theoretical description of the nonequilibrium dynamics is important to address both effects within a unified framework and present first results from weakly coupled non-equilibrium simulations in [1] to quantify the relative importance of initial state and final state effects based on theoretical calculations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Philipp Geppert ◽  
Max Althön ◽  
Daniel Fichtner ◽  
Herwig Ott

AbstractExploring the dynamics of inelastic and reactive collisions on the quantum level is a fundamental goal in quantum chemistry. Such collisions are of particular importance in connection with Rydberg atoms in dense environments since they may considerably influence both the lifetime and the quantum state of the scattered Rydberg atoms. Here, we report on the study of state-changing collisions between Rydberg atoms and ground state atoms. We employ high-resolution momentum spectroscopy to identify the final states. In contrast to previous studies, we find that the outcome of such collisions is not limited to a single hydrogenic manifold. We observe a redistribution of population over a wide range of final states. We also find that even the decay to states with the same angular momentum quantum number as the initial state, but different principal quantum number is possible. We model the underlying physical process in the framework of a short-lived Rydberg quasi-molecular complex, where a charge exchange process gives rise to an oscillating electric field that causes transitions within the Rydberg manifold. The distribution of final states shows a diffusive-like behavior.


2016 ◽  
Vol 230 (4) ◽  
Author(s):  
Fumihiko Matsui ◽  
Naoyuki Maejima ◽  
Hirosuke Matsui ◽  
Hiroaki Nishikawa ◽  
Hiroshi Daimon ◽  
...  

AbstractUpon a core level excitation by circularly polarized light (CPL), the angular momentum of light, i.e. helicity, is transferred to the emitted photoelectron. This phenomenon can be confirmed by the parallax shift measurement of the forward focusing peak (FFP) direction in a stereograph of the atomic arrangement. The angular momentum of the emitted photoelectron is the sum of CPL helicity and the magnetic quantum number (MQN) of the initial state that define the quantum number of the core hole final state. The core hole may decay via Auger electron emission, where in this two electron process the angular momentum has to be conserved as well. Starting from a given core hole, different Auger decay channels with different final state energies and angular momenta of the emitted Auger electrons may be populated. Here we report the observation and formulation of the angular momentum transfer of light to Auger electrons, instead of photoelectrons. We measured photoelectron and Auger electron intensity angular distributions from Cu(111) and Cu(001) surfaces as a function of photon energy and photoelectron kinetic energy. By combining Auger electron spectroscopy with the FFP shift measurements at absorption threshold, element- and MQN-specific hole states can be generated in the valence band.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 436
Author(s):  
Antonio Amoroso ◽  
Stefano Bagnasco ◽  
Rinaldo Baldini Ferroli ◽  
Ilaria Balossino ◽  
Monica Bertani ◽  
...  

There are two available sets of data on the e+e−→Λc+Λ¯c− cross section at energies close to the production threshold, collected by the Belle and by the BESIII Collaborations. The measurement of the former, performed by means of the initial state radiation technique, is compatible with the presence of a resonance, called ψ(4660), observed also in other final states. On the contrary, the latter is measured an almost flat and hence non-resonant cross section in the energy region just above the production threshold, but the data stop before the possible rise in the cross section for the resonant production. We propose an effective model to describe the behavior of the data near this threshold, which is based on a Coulomb-like enhancement factor due to the strong interaction among the final state particles. In the framework of this model, it is possible to describe both datasets.


Sign in / Sign up

Export Citation Format

Share Document