A Study on the Effectiveness Verification of Hydrological Cycle of Pervious Pavement using LID Simulator

2015 ◽  
Vol 48 (5) ◽  
pp. 321-330
Author(s):  
Mi Eun Kim ◽  
◽  
Young Su Jang ◽  
Chil Ho Nam ◽  
Hyun Suk Shin
2017 ◽  
Vol 23 (1) ◽  
Author(s):  
V.K. YADAV ◽  
SONAM SHARMA ◽  
A.K. SRIVASTAVA ◽  
P.K. KHARE

Ponds are an important fresh water critical ecosystem for plants and animals providing goods and services including food, fodder, fish, irrigation, hydrological cycle, shelter, medicine, culture, aesthetic and recreation. Ponds cover less than 2 percent of worlds land surface. Ponds are important source of fresh water for human use. These are threatened by urbanization, industrialization, over exploitation, fragmentation, habitat destruction, pollution, illegal capturing of land and climate changes. These above factors have been destroying ponds very rapidly putting them in danger of extinction of a great number of local biodiversity. It is necessary to formulate a correct conservation strategy for pond restoration in order to meet the growing needs of fresh water by increasing the human population. Some measures have been compiled and proposed in the present review.


2015 ◽  
pp. 40-43 ◽  
Author(s):  
Andreas G. Degenhardt

The isotope ratios of water, organic matter and micronutrients from food are dependent on the circumstances and sites of their origin and production. Analytical methods, based on mass spectrometry, are established for routine determination of isotopes. Differentiation between metabolic pathways of C3 and C4 plants is realizable by determination 13C/12C ratios which can distinguish and identify sucrose from pure beet (Beta vulgaris) and pure cane (Saccharum officinarum). Influenced by the worldwide hydrological cycle the isotope ratios of 2H/1H and 18O/16O vary systematically, the variations give information about geographical origin. The exemplarily determination of authenticity is demonstrated by using mass spectrometric isotope ratio evaluation for identification of plant source and geographical origin with the help of selected sugar samples with known origin.


2017 ◽  
pp. 87-91
Author(s):  
Andreas G. Degenhardt ◽  
Elke Jansen ◽  
Timo, J. Koch

Modern instrumental analytical methods for the determination of 13C/12C ratios are established to differentiate between metabolic products of C3 and C4 plants. Differentiation and identification of sucrose from pure beet (Beta vulgaris) and pure cane (Saccharum officinarum) are possible without doubt. Influenced by the worldwide hydrological cycle the determination of the isotope ratios of 2H/1H and 18O/16O as well as their variations provide information about geographical origin. Using samples of selected crystal cane sugar (CCS) with known origin, invert sugar syrups (ISS) as well as burnt sugar syrups (BSS) produced therefrom, the authenticity was determined. The speciality sugars ISS and BSS which were made from CCS could be identified as carbohydrates of C4 plants by using 13C/12C Isotope-Ratio Mass Spectrometry (IRMS). In combination with yeast fermentation of ISS and sugar separation from BSS and fermentation into ethanol as well as knowledge about production water, the C2-H/O isotope ratios of ethanol can theoretically determine the geographical origin of the sugars.


2018 ◽  
Author(s):  
Jessica H. Whiteside ◽  
◽  
Joyce Yager ◽  
Paul Olsen ◽  
Martin Palmer ◽  
...  

Biologia ◽  
2021 ◽  
Author(s):  
Lucena R. Virgilio ◽  
Werther Pereira Ramalho ◽  
João C. B. Silva ◽  
Monik Oliveira da Suçuarana ◽  
Rodrigo Souza Gomes ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Philipp de Vrese ◽  
Tobias Stacke ◽  
Jeremy Caves Rugenstein ◽  
Jason Goodman ◽  
Victor Brovkin

AbstractSimple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 507 ◽  
Author(s):  
Dariusz Wrzesiński ◽  
Leszek Sobkowiak

Identification of river flow regime and its possible changes caused by natural factors or human activity is one of major issues in modern hydrology. In such studies different approaches and different indicators can be used. The aim of this study is to determine changes in flow regime of the largest river in Poland—the Vistula, using new, more objectified coefficients and indices, based on data recorded in 22 gauges on the Vistula mainstream and 38 gauges on its tributaries in the multi-year period 1971–2010. The paper consists of three main parts: in the first part, in order to recognize changes in the flow regime characteristics along the Vistula, data from gauges located on the river mainstream were analyzed with the help of the theory of entropy. In the second part gauging stations on the Vistula mainstream and its tributaries were grouped; values of the newly introduced pentadic Pardé’s coefficient of flow (discharge) (PPC) were taken as the grouping criterion. In the third part of the study a novel method of determining river regime characteristics was applied: through the recognition of the temporal structure of hydrological phenomena and their changes in the annual cycle sequences of hydrological periods (characteristic phases of the hydrological cycle) on the Vistula River mainstream and its tributaries were identified and their occurrence in the yearly cycle was discussed. Based on the detected changes of the 73-pentad Pardé’s coefficients of flow four main types of rivers were distinguished. Transformation of the flow regime was reflected in the identified different sequences of hydrological periods in the average annual cycle. It was found that while transformation of the Vistula River regime occurred along its whole course, the most frequent changes were detected in its upper, mountainous reaches, under the influence of the flow characteristics of its tributaries. This allowed the Vistula to be considered the allochthonous river. These findings are interesting not only from a theoretical point of view, but they also can be valuable to stakeholders in the field of the Vistula River basin water management and hydrological forecasting, including flood protection, which has recently become a matter of growing concern due to the observed effects of climate change and human impact.


Sign in / Sign up

Export Citation Format

Share Document