Umformverhalten von Pouchzellenverpackungen*/Forming behaviour of Lithium-Ion packaging - Erichsen cupping tests for determining the technical properties of composite films

2016 ◽  
Vol 106 (03) ◽  
pp. 187-191
Author(s):  
R. Singer ◽  
J. Prof. Fleischer

Die Verpackung von Pouchzellen besteht aus einer dünnen Aluminiumverbundfolie, die zu Halbschalen tiefgezogen wird. Um diesen Prozess beherrschen zu können, muss zunächst das Umformverhalten der Folie charakterisiert werden. In diesem Fachartikel werden daher Erichsentiefungsversuche diskutiert. Aus ihnen geht hervor, dass das Verbundmaterial isotrop ist und die Parameter Foliendicke, Matrizenradien sowie Temperatur das Umformergebnis der Folie maßgeblich beeinflussen.   The packing of pouch cells consists of a thin aluminium composite film formed into half shells by deep-drawing. In order to be able to control this process, the forming behaviour of the film must first be characterized. Therefor, this article discusses the Erichsen cupping tests. These tests show that the composite material is isotropic and the parameters such as film thickness, die radius and temperature have a significant impact on the forming result of the film.

2012 ◽  
Vol 565 ◽  
pp. 615-620
Author(s):  
Bin Shen ◽  
Liang Wang ◽  
Su Lin Chen ◽  
Fang Hong Sun

The CVD diamond/diamond-like carbon composite film is fabricated on the WC-Co substrate by depositing a layer of Diamond-like Carbon film on the surface of conventional Micro- or Nano-crystalline diamond film. The hot filament chemical vapor deposition (HFCVD) method and vacuum arc discharge with a graphite cathode are adopted respectively to deposit the MCD/NCD and DLC films. A variety of characterization techniques, including filed emission scanning electron microscope (FE-SEM) and Raman spectroscopy are employed to investigate the surface morphology and atomic bonding state of as-deposited MCD/DLC and NCD/DLC composite film. The results show that both MCD/DLC and NCD/DLC composite films present similar surface morphology with the MCD and NCD films, except for scattering a considerable amount of small-sized diamond crystallites among the grain boundary area. The atomic-bonding state of as-deposited MCD/DLC and NCD/DLC composite films is determined by the top-layered DLC film, which is mainly consisted of amorphous carbon phase and no discernible sp3 characteristic peak can be observed from their Raman spectrum. Furthermore, the tribological properties of as-deposited MCD/DLC and NCD/DLC composite films is examined using a ball-on-plate reciprocating friction tester under both dry sliding and water-lubricating conditions, comparing with conventional DLC, MCD and NCD films. Silicon nitride balls are used as counterpart materials. For the CVD diamond/DLC composite films, the self-lubricating effect of top-layered DLC film is beneficial for suppressing the initial friction peak, as well as shortening the run-in period. The average friction coefficients of MCD/DLC and NCD/DLC composite films during stable sliding period are 0.07 and 0.10 respectively in dry sliding; while under water-lubricating condition, they further decreases to 0.03 and 0.07.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1908
Author(s):  
Hai Li ◽  
Sooman Lim

Self-polarized piezoelectric devices have attracted significant interest owing to their fabrication processes with low energy consumption. Herein, novel poling-free piezoelectric nanogenerators (PENGs) based on self-polarized polyvinylidene difluoride (PVDF) induced by the incorporation of different surface-modified barium titanate nanoparticles (BTO NPs) were prepared via a fully printing process. To reveal the effect of intermolecular interactions between PVDF and NP surface groups, BTO NPs were modified with hydrophilic polydopamine (PDA) and hydrophobic 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) to yield PDA-BTO and PFD-BTO, respectively. This study demonstrates that the stronger hydrogen bonding interactions existed in PFD-BTO/PVDF composite film comparative to the PDA-BTO/PVDF composite film induced the higher β-phase formation (90%), which was evidenced by the XRD, FTIR and DSC results, as well as led to a better dispersion of NPs and improved mechanical properties of composite films. Consequently, PFD-BTO/PVDF-based PENGs without electric poling exhibited a significantly improved output voltage of 5.9 V and power density of 102 μW cm−3, which was 1.8 and 2.9 times higher than that of PDA-BTO/PVDF-based PENGs, respectively. This study provides a promising approach for advancing the search for high-performance, self-polarized PENGs in next-generation electric and electronic industries.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Zhaohua Jiang ◽  
Yongjun Xu

The low dielectric constant of the nonpolar polymer poly(1-butene) (PB-1) limits its application as a diaphragm element in energy storage capacitors. In this work, Ba(Zr0.2Ti0.8)O3-coated multiwalled carbon nanotubes (BZT@MWCNTs) were first prepared by using the sol–gel hydrothermal method and then modified with polydopamine (PDA) via noncovalent polymerization. Finally, PB-1 matrix composite films filled with PDA-modified BZT@MWCNTs nanoparticles were fabricated through a solution-casting method. Results indicated that the PDA-modified BZT@MWCNTs had good dispersion and binding force in the PB-1 matrix. These characteristics improved the dielectric and energy storage performances of the films. Specifically, the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film exhibited the best dielectric performance. At 1 kHz, the dielectric constant of this film was 25.43, which was 12.7 times that of pure PB-1 films. Moreover, its dielectric loss was 0.0077. Furthermore, under the weak electric field of 210 MV·m−1, the highest energy density of the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film was 4.57 J·cm−3, which was over 3.5 times that of PB-1 film (≈1.3 J·cm−3 at 388 MV·m−1).


2021 ◽  
pp. 095400832110003
Author(s):  
Ruiyi Li ◽  
Chengcheng Ding ◽  
Juan Yu ◽  
Xiaodong Wang ◽  
Pei Huang

In this article, the polyimide (PI) composite films with synergistically improving thermal conductivity were prepared by adding a few graphene nanoplatelets (GNP) and various hexagonal boron nitride (h-BN) contents into the PI matrix. The thermal conductivity of PI composite film with 1 wt% GNP and 30 wt% h-BN content was 1.21 W(m·k)− 1, which was higher than that of the PI composite film with 30 wt% h-BN content (0.45 W(m·k)− 1), the synergistic efficiency of GNP under various h-BN content (10 wt%, 20 wt%, and 30 wt%) were 1.70, 2.71, and 3.09, respectively. And it was found that the increased h-BN content can suppress the dielectric properties caused by GNP in the matrix. The dielectric permittivity and dielectric loss tangent of 1 wt% GNP/PI composite film were 10.69, 0.661 at 103 Hz, respectively, and that of the 30 wt% h-BN + GNP/PI composite film were 4.29 and 0.1367, respectively. Moreover, the mechanical properties of the PI composite film were suitable for practical applications. And the heat resistance index and the residual rate at 700°C of PI composite film increased to 326.8°C, 74.43%, respectively, and these of PI film were 292.6°C and 59.26%. Thus, it may provide a reference value for applying the filler hybridization/PI film in the electronic packaging materials.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2015 ◽  
Vol 167 ◽  
pp. 303-308 ◽  
Author(s):  
Hong-Qiang Wang ◽  
Guan-Hua Yang ◽  
You-Guo Huang ◽  
Xiao-Hui Zhang ◽  
Zhi-Xiong Yan ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1243 ◽  
Author(s):  
Chunmei Zhang ◽  
Tianliang Zhai ◽  
Chao Zhan ◽  
Qiuping Fu ◽  
Chao Ma

The graphene nanosheets (GNS)/polydimethylsiloxane (PDMS) composite films with out-of-plane dielectric actuation behavior were prepared through a layer-by-layer spin coating process. The GNS-PDMS/PDMS composite films with 1~3 layers of GNS-PDMS films were spin coated on top of the PDMS film. The dielectric, mechanical, and electromechanical actuation properties of the composite films were investigated. The dielectric constant of the GNS-PDMS3/PDMS composite film at 1 kHz is 5.52, which is 1.7 times that of the GNS-PDMS1/PDMS composite film. The actuated displacement of the GNS-PDMS/PDMS composite films is greatly enhanced by increasing the number of GNS-PDMS layers. This study provides a novel alternative approach for fabricating high-performance actuators with out-of-plane actuation behavior.


Sign in / Sign up

Export Citation Format

Share Document