scholarly journals Aspects of the structure on the coast of the West Greenland volcanic province revealed in seismic data

2007 ◽  
Vol 55 ◽  
pp. 65-80
Author(s):  
N. Skaarup ◽  
T.C.R. Pulvertaft

The coastal structure in central West Greenland is expressed by Palaeogene basalts which show pronounced seaward dip. Traced along strike the tilted basalts occur in two segments, separated by an area in which dips are low. Within these segments the lavas have been displaced by extensional faults with strike parallel to the strike of the lavas and dip and downthrow to the landward side. This structural pattern bears many similarities to regional structural features in volcanic rifted margins in other parts of the world, although in West Greenland the continent-ocean boundary is situated more than 100 km west of the coast. The structure has previously been studied onshore and has now been studied in high-resolution seismic data acquired both west of the coast and in the sounds between the Nuussuaq and Svartenhuk peninsulas. From the offshore data it can be seen that within the sections correlated with mid-Paleocene volcanic rocks onshore, the tilting of the lavas took place almost entirely after eruption, as there is little or no indication of any increase of dip towards the faults or of fan-shaped geometry in cross-section. However, southwest of Ubekendt Ejland and stratigraphically within Early Eocene lavas, dips can be seen to increase with depth in several fault blocks, indicating that tilting was active during eruption of these lavas. It is therefore concluded that tilting of the volcanic rocks in the coastal zone took place largely in the Eocene. This conclusion is corroborated by the following onshore evidence: Firstly, the angle of discordance between seaward-dipping Eocene lavas and the underlying tilted Paleocene lavas is small, where observed at all, so the mid-Paleocene lavas must owe their seaward dip largely to tilting during the Eocene. Secondly, Early Eocene ages have been obtained from sequentially tilted dykes onshore. This tilting and concomitant extensional faulting was contemporaneous with the second phase of seafloor spreading in the Labrador Sea which took place during the Eocene. The first phase of seafloor spreading in this sea took place between magnetochrons 27r and 24r and was not accompanied by significant rifting of lavas in central West Greenland. It can also be seen from the seismic data that the tilted lavas level out less than 25 km from the coast. West of this, the volcanics generally show very low dips and thin gradually towards the continent-ocean boundary.

Author(s):  
Flemming G. Christiansen ◽  
Anders Boesen ◽  
Jørgen A. Bojesen-Koefoed ◽  
James A. Chalmers ◽  
Finn Dalhoff ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Christiansen, F. G., Boesen, A., Bojesen-Koefoed, J. A., Chalmers, J. A., Dalhoff, F., Dam, G., Ferré Hjortkjær, B., Kristensen, L., Melchior Larsen, L., Marcussen, C., Mathiesen, A., Nøhr-Hansen, H., Pedersen, A. K., Pedersen, G. K., Pulvertaft, T. C. R., Skaarup, N., & Sønderholm, M. (1999). Petroleum geological activities in West Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 46-56. https://doi.org/10.34194/ggub.v183.5204 _______________ In the last few years there has been renewed interest for petroleum exploration in West Greenland and licences have been granted to two groups of companies: the Fylla licence operated by Statoil was awarded late in 1996; the Sisimiut-West licence operated by Phillips Petroleum was awarded in the summer of 1998 (Fig. 1). The first offshore well for more than 20 years will be drilled in the year 2000 on one of the very spectacular structures within the Fylla area. To stimulate further petroleum exploration around Greenland – and in particular in West Greenland – a new licensing policy has been adopted. In July 1998, the administration of mineral and petroleum resources was transferred from the Danish Ministry of Environment and Energy to the Bureau of Minerals and Petroleum under the Government of Greenland in Nuuk. Shortly after this, the Greenlandic and Danish governments decided to develop a new exploration strategy. A working group consisting of members from the authorities (including the Geological Survey of Denmark and Greenland – GEUS) made recommendations on the best ways to stimulate exploration in the various regions on- and offshore Greenland. The strategy work included discussions with seismic companies because it was considered important that industry acquires additional seismic data in the seasons 1999 and 2000.


Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.


2021 ◽  
pp. 1-26
Author(s):  
Taylor A. Ducharme ◽  
Christopher R.M. McFarlane ◽  
Deanne van Rooyen ◽  
David Corrigan

Abstract The Flowers River Igneous Suite of north-central Labrador comprises several discrete peralkaline granite ring intrusions and their coeval volcanic succession. The Flowers River Granite was emplaced into Mesoproterozoic-age anorthosite–mangerite–charnockite–granite (AMCG) -affinity rocks at the southernmost extent of the Nain Plutonic Suite coastal lineament batholith. New U–Pb zircon geochronology is presented to clarify the timing and relationships among the igneous associations exposed in the region. Fayalite-bearing AMCG granitoids in the region record ages of 1290 ± 3 Ma, whereas the Flowers River Granite yields an age of 1281 ± 3 Ma. Volcanism occurred in three discrete events, two of which coincided with emplacement of the AMCG and Flowers River suites, respectively. Shared geochemical affinities suggest that each generation of volcanic rocks was derived from its coeval intrusive suite. The third volcanic event occurred at 1271 ± 3 Ma, and its products bear a broad geochemical resemblance to the second phase of volcanism. The surrounding AMCG-affinity ferrodiorites and fayalite-bearing granitoids display moderately enriched major- and trace-element signatures relative to equivalent lithologies found elsewhere in the Nain Plutonic Suite. Trace-element compositions also support a relationship between the Flowers River Granite and its AMCG-affinity host rocks, most likely via delayed partial melting of residual parental material in the lower crust. Enrichment manifested only in the southernmost part of the Nain Plutonic Suite as a result of its relative proximity to multiple Palaeoproterozoic tectonic boundaries. Repeated exposure to subduction-derived metasomatic fluids created a persistent region of enrichment in the underlying lithospheric mantle that was tapped during later melt generation, producing multiple successive moderately to strongly enriched magmatic episodes.


2021 ◽  
Author(s):  
Benoit Deffontaines ◽  
Kuo-Jen Chang ◽  
Samuel Magalhaes ◽  
Gérardo Fortunato

<p>Volcanic areas in the World are often difficult to map especially in a structural point of view as (1) fault planes are generally covered and filled by more recent lava flows and (2) volcanic rocks have very few tectonic striations. Kuei-Shan Tao (11km from Ilan Plain – NE Taiwan) is a volcanic island, located at the soutwestern tip of the South Okinawa trough (SWOT). Two incompatible geological maps had been already published both lacking faults and structural features (Hsu, 1963 and Chiu et al., 2010). We propose herein not only to up-date the Kuei-Shan Tao geological map with our high resolution dataset, but also to create the Kuei-Shan Tao structural scheme in order to better understand its geological and tectonic history.</p><p>Consequently, we first acquired aerial photographs from our UAS survey and get our new UAS high resolution DTM (HR UAS-DTM hereafter) with a ground resolution <10cm processed through classical photogrammetric methods. Taking into account common sense geomorphic and structural interpretation and reasoning deduced form our HR UAS-DTM, and the outcropping lithologies situated all along the shoreline, we have up-dated the Kuei-Shan Tao geological mapping and its major structures. To conclude, the lithologies (andesitic lava flows and pyroclastic falls) and the new structural scheme lead us to propose a scenario for both the construction as well as the dismantling of Kuei-Shan Tao which are keys for both geology and geodynamics of the SWOT.</p>


2006 ◽  
Vol 11 ◽  
pp. 145-162 ◽  
Author(s):  
Kai Sørensen ◽  
John A. Korstgård ◽  
William E. Glassley ◽  
Bo Møller Stensgaard

The Nordre Strømfjord shear zone in the fjord Arfersiorfik, central West Greenland, consists of alternating panels of supracrustal rocks and orthogneisses which together form a vertical zone up to 7 km wide with sinistral transcurrent, ductile deformation, which occurred under middle amphibolite facies conditions. The pelitic and metavolcanic schists and paragneisses are all highly deformed, while the orthogneisses appear more variably deformed, with increasing deformation evident towards the supracrustal units. The c. 1.92 Ga Arfersiorfik quartz diorite is traceable for a distance of at least 35 km from the Inland Ice towards the west-south-west. Towards its northern contact with an intensely deformed schist unit it shows a similar pattern of increasing strain, which is accompanied by chemical and mineralogical changes. The metasomatic changes associated with the shear zone deformation are superimposed on a wide range of original chemical compositions, which reflect magmatic olivine and/ or pyroxene as well as hornblende fractionation trends. The chemistry of the Arfersiorfik quartz diorite suite as a whole is comparable to that of Phanerozoic plutonic and volcanic rocks of calc-alkaline affinity.


Author(s):  
A.I. Malinovsky ◽  

The article discusses the results of studying heavy clastic minerals from the Cretaceous sandy rocks of the West Sakhalin Terrane, and also presents their paleogeodynamic interpretation. It is shown that in terms of mineralogical and petrographic parameters, the terrane sandstones correspond to typical graywackes and are petrogenic rocks formed mainly by destruction of igneous rocks of the source areas. The sediments were found to contain both sialic, granite-metamorphic association minerals, and femic, formed by products of the destruction of basic and ultrabasic volcanic rocks. The interpretation of the entire set of data on the content, distribution and microchemical composition of heavy minerals was carried out by comparing them with minerals from older rocks and modern sediments accumulated in known geodynamic settings. The results obtained indicate that during the Cretaceous, sedimentation occurred along the continent-ocean boundary in a basin associated with large-scale left-lateral transform movements of the Izanagi Plate relative to the Eurasian continent. The source area that supplied clastic material to that basin combined a sialic landmass composed of granite-metamorphic and sedimentary rocks, a mature deeply dissected ensialic island arc, and fragments of accretion prisms, in the structure of which involved ophiolites.


1988 ◽  
Vol 140 ◽  
pp. 64-66
Author(s):  
J.A Chalmers

A pilot study is being conducted to determine if the use of seismo-stratigraphic interpretation techniques can increase the understanding af the geology of offshore West Greenland in order to reassess the prospectivity of the area. During the period 1975 to 1979, a number of concessions offshore West Greenland were licensed to various consortia of oil companies to search for petroleum. Some 40 000 km of seismic data were acquired, all of which is now released. Five wells were drilled, all of them dry, and all concessions were relinquished by the industry by 1979. The regional geology of offshore West Greenland has been summarised by Manderscheid (1980) and Henderson et al. (1981). They show the West Greenland Basin to consist of fairly uniformly westward dipping sediments bordered near the shelf break by a basement ridge. These authors used what may be termed 'conventional' techniques of seismic interpretation. However, since that time the techniques of seismo-stratigraphy (Vail et al., 1977; Hubbard et al., 1985) have become established. They are now being applied to study seismic data acquired during the mid-1970s.


2007 ◽  
Vol 13 ◽  
pp. 41-44 ◽  
Author(s):  
Christian Knudsen ◽  
Jeroen A.M. Van Gool ◽  
Claus Østergaard ◽  
Julie A. Hollis ◽  
Matilde Rink-Jørgensen ◽  
...  

A gold prospect on central Storø in the Nuuk region of southern West Greenland is hosted by a sequence of intensely deformed, amphibolite facies supracrustal rocks of late Mesoto Neoarchaean age. The prospect is at present being explored by the Greenlandic mining company NunaMinerals A/S. Amphibolites likely to be derived from basaltic volcanic rocks dominate, and ultrabasic to intermediate rocks are also interpreted to be derived from volcanic rocks. The sequence also contains metasedimentary rocks including quartzites and cordierite-, sillimanite-, garnet- and biotite-bearing aluminous gneisses. The metasediments contain detrital zircon from different sources indicating a maximum age of the mineralisation of c. 2.8 Ga. The original deposition of the various rock types is believed to have taken place in a back-arc setting. Gold is mainly hosted in garnet- and biotite-rich zones in amphibolites often associated with quartz veins. Gold has been found within garnets indicating that the mineralisation is pre-metamorphic, which points to a minimum age of the mineralisation of c. 2.6 Ga. The geochemistry of the goldbearing zones indicates that the initial gold mineralisation is tied to fluid-induced sericitisation of a basic volcanic protolith. The hosting rocks and the mineralisation are affected by several generations of folding.


1989 ◽  
Vol 26 (5) ◽  
pp. 956-968 ◽  
Author(s):  
D. B. Clarke ◽  
B. I. Cameron ◽  
G. K. Muecke ◽  
J. L. Bates

Fine- to medium-grained, phyric and aphyric basalt samples from ODP Leg 105, site 647A, in the Labrador Sea show little evidence of alteration. Chemically, these rocks are low-potassium (0.01–0.09 wt.% K2O), olivine- to quartz-normative tholeiites that compare closely with the very depleted terrestrial Paleocene volcanic rocks in the Davis Strait region of Baffin Island and West Greenland. However, differences exist in the Sr–Nd isotope systematics of the two suites; the Labrador Sea samples have ε Nd values (+9.3) indicative of a more depleted source, and are higher in 87Sr/86Sr (0.7040), relative to the Davis Strait basalts (ε Nd +2.54 to +8.97; mean 87Sr/86Sr 0.7034). The higher 87Sr/86Sr in the Labrador Sea samples may reflect seawater exchange despite no petrographic evidence for significant alteration. The Labrador Sea and early Davis Strait basalts may have been derived from a similar depleted mantle source composition; however, the later Davis Strait magmas were generated from a different mantle. None of the Baffin Island, West Greenland, or Labrador Sea samples show unequivocal geochemical evidence for contamination with continental crust.


Sign in / Sign up

Export Citation Format

Share Document