scholarly journals A new epoxide-mediated route for binary Al2O3-TiO2 aerogels

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 205-206
Author(s):  
L. A. Polevoy ◽  
◽  
A. Ye. Baranchikov ◽  
V. K. Ivanov ◽  
◽  
...  

A new method for the synthesis of binary aerogels Al2O3-TiO2 by epoxide-mediated route was proposed. The synthesis is conducted in DMF solution, the starting materials for the synthesis are aluminium nitrate and titanium chloride. The obtained homogeneous amorphous aerogels possess high surface (250–750 m2/g) and porosity (86–95 %).

2011 ◽  
Vol 65 (2) ◽  
pp. 326-328 ◽  
Author(s):  
D. Huang ◽  
Y. Miyamoto ◽  
J. Ding ◽  
J. Gu ◽  
S. Zhu ◽  
...  

2020 ◽  
pp. 303-314
Author(s):  
Ol'ga Vladimirovna Yatsenkova ◽  
Andrey Mikhaylovich Skripnikov ◽  
Anton Aleksandrovich Karacharov ◽  
Elena Valentinovna Mazurova ◽  
Sergey Aleksandrovich Vorob'yev ◽  
...  

The new method of producing of microfibrillated cellulose (MFC) from spruce wood was described. This method includes the stages of cellulose obtaining by peroxide delignification of wood in the medium “acetic acid-water-H2SO4 catalyst” and cellulose acid hydrolysis, ultrasonic treatment, and freeze drying. The structure of cellulosic products was studied by FTIR, XRD, SEM, AFM, dynamic light scattering methods. The particle size of final cellulosic products is characteristic of microfibrillated cellulose according to the TAPPI Standard WI 3021 classification. The particles of the MFC are characterized by a rather high surface charge, and its aqueous suspension showed a high colloidal stability for a long time. According to the AFM data the surface of the microfibrillated cellulose film is formed by homogeneous spherical particles with a diameter about 80 nm and does not contain external inclusions. The new method of obtaining MFC from spruce wood is less energy-consuming and more environmentally friendly compared to traditional technologies due to single-stage production of high quality cellulose without the use of sulfur- and chlorine containing delignifying agents, increased pressure and high water consumption.


2000 ◽  
Vol 29 (3) ◽  
pp. 282-283 ◽  
Author(s):  
Wenhan Wang ◽  
Yi Tang ◽  
Jinbing Xiao ◽  
Weiming Hua ◽  
Nan He ◽  
...  

Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
T. S. Kuan

Recent electron diffraction studies have found ordered phases in AlxGa1-xAs, GaAsxSb1-x, and InxGa1-xAs alloy systems, and these ordered phases are likely to be found in many other III-V ternary alloys as well. The presence of ordered phases in these alloys was detected in the diffraction patterns through the appearance of superstructure reflections between the Bragg peaks (Fig. 1). The ordered phase observed in the AlxGa1-xAs and InxGa1-xAs systems is of the CuAu-I type, whereas in GaAsxSb1-x this phase and a chalcopyrite type ordered phase can be present simultaneously. The degree of order in these alloys is strongly dependent on the growth conditions, and during the growth of these alloys, high surface mobility of the depositing species is essential for the onset of ordering. Thus, the growth on atomically flat (110) surfaces usually produces much stronger ordering than the growth on (100) surfaces. The degree of order is also affected by the presence of antiphase boundaries (APBs) in the ordered phase. As shown in Fig. 2(a), a perfectly ordered In0.5Ga0.5As structure grown along the <110> direction consists of alternating InAs and GaAs monolayers, but due to local growth fluctuations, two types of APBs can occur: one involves two consecutive InAs monolayers and the other involves two consecutive GaAs monolayers.


Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


Author(s):  
A. Sachdev ◽  
J. Schwank

Platinum - tin bimetallic catalysts have been primarily utilized in the chemical industry in the catalytic reforming of petroleum fractions. In this process the naphtha feedstock is converted to hydrocarbons with higher octane numbers and high anti-knock qualities. Most of these catalysts contain small metal particles or crystallites supported on high surface area insulating oxide supports. The determination of the structure and composition of these particles is crucial to the understanding of the catalytic behavior. In a bimetallic catalyst it is important to know how the two metals are distributed within the particle size range and in what way the addition of a second metal affects the size, structure and composition of the metal particles. An added complication in the Pt-Sn system is the possibility of alloy formation between the two elements for all atomic ratios.


Sign in / Sign up

Export Citation Format

Share Document