scholarly journals Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

2015 ◽  
Vol 6 ◽  
pp. 901-906 ◽  
Author(s):  
Mykola Telychko ◽  
Jan Berger ◽  
Zsolt Majzik ◽  
Pavel Jelínek ◽  
Martin Švec

We investigated single-layer graphene on SiC(0001) by atomic force and tunneling current microscopy, to separate the topographic and electronic contributions from the overall landscape. The analysis revealed that the roughness evaluated from the atomic force maps is very low, in accord with theoretical simulations. We also observed that characteristic electron scattering effects on graphene edges and defects are not accompanied by any out-of-plane relaxations of carbon atoms.

2002 ◽  
Vol 716 ◽  
Author(s):  
K.A. Peterson ◽  
C. Park ◽  
I. Dutta

AbstractDeformation of interconnect structures at the back-end of microelectronic devices during processing or service can have a pronounced effect on component reliability. Here, we use atomic force microscopy (AFM) to study plastic deformation and interfacial sliding of Cu interconnects lines on Si. The behavior of both stand-alone Cu lines and lines embedded in a low K dielectric was studied. Following thermal cycling, changes were observed in the in-plane Cu line dimensions, as well as the out-of plane step height between Cu and dielectric in single layer structures. These were attributed to differential deformation of the Cu/Si and Cu/dielectric material pairs due to thermal expansion mismatch, accommodated by interfacial creep. These results are discussed in light of previous work on the mechanism of interfacial creep. Some preliminary results on the distortion of Cu lines due to package-level stresses are also presented.


2019 ◽  
Vol 963 ◽  
pp. 161-165
Author(s):  
Wan Cheng Yu ◽  
Xiu Fang Chen ◽  
Xiao Bo Hu ◽  
Xian Gang Xu ◽  
Peng Jin ◽  
...  

Single layer graphene is fabricated on the Si face of silicon carbide through thermal decomposition. The thickness of graphene was checked by a combination of ex situ Kelvin probe force microscopy together with Raman spectroscopy and atomic force microscopy. The amount of residual strain induced is calculated to between 1.3% and 0.7%. Results also show that the magnitude of strain increased with growth time while the uniformity of strain improved.


2012 ◽  
Vol 44 (6) ◽  
pp. 768-771 ◽  
Author(s):  
Sangku Kwon ◽  
H. J. Chung ◽  
Sunae Seo ◽  
Jeong Young Park

2017 ◽  
Vol 744 ◽  
pp. 458-462
Author(s):  
Xu Qiao ◽  
Zhi Lin ◽  
Yuan Yuan Si ◽  
Xiao Dan Lin ◽  
Shao Wei Cui ◽  
...  

High-quality graphene is prepared via In Situ hydrogen exfoliation of the reaction of stage-1 FeCl3-GIC with sodium borohydride solution, followed by washings and sonication. The hydrogen evolved from the borohydride exfoliates the GIC and reduces defect structure in the graphene simultaneously, make it more conjugated. Raman spectrum results show the intensity ratio of the D and G peak is about 0.09, even smaller than that of the original graphite, which is 0.17. The only C1s peak locating at 284.9 eV in another way supports the only one structure in the graphene. SEM image of exfoliated graphene Fig. 2(f) shows that the graphene obtained has curly morphology, which is significantly different from graphite flakes. TEM of the graphene shows a single layer graphene and its overlap with other graphene. Atomic force microscopy (AFM) measure shows that the average thickness of graphene sheets is about 0.530 nm. Proving that the high quality graphene prepared is chiefly single layer. After compression molded into graphene mat, its conductivity reaches 2.85×105S/m, which is about one third of the theoretical value of graphene. This method is promising for mass production of high-quality graphene.


2000 ◽  
Vol 15 (3) ◽  
pp. 621-628 ◽  
Author(s):  
Jonathan S. Morrell ◽  
Ziling B. Xue ◽  
Eliot D. Specht ◽  
Amit Goyal ◽  
Patrick M. Martin ◽  
...  

Chemical solution epitaxy was used to deposit an epitaxial film of Gd2O3 on roll-textured nickel. A 2-methoxyethanol solution of gadolinium methoxyethoxide was used for spin-coating and dip-coating. Films were crystallized using a heat treatment at 1160 °C for 1 h in 4% H2/96% Ar. Single-layer films were approximately 600 Å in thickness, and thicker films could be produced using multiple coatings. θ/2θ x-ray diffractograms revealed only (0041) reflections, indicating a high degree of out-of-plane texture. A pole-figure about the Gd2O3 (222) reflection indicated a single in-plane epitaxy. Scanning electron microscopy showed that the films were smooth, continuous, and free of pin holes. Atomic force microscopy revealed an average surface roughness of 53 Å. Electron diffraction indicated that the misalignment of the majority of the grains in the plane was less than 10°. High-current (0.4 MA/cm2) Yba2Cu3O7–δ films were grown on roll-textured nickel substrates using Gd2O3 as the base layer in a three-layer buffer structure.


2020 ◽  
Vol 10 (15) ◽  
pp. 5157
Author(s):  
Frank Lee ◽  
Manoj Tripathi ◽  
Peter Lynch ◽  
Alan B. Dalton

Graphene shows substrate-dependent physical and electronic properties. Here, we presented the interaction between single-layer graphene and silver nanowire (AgNW) in terms of physical straining and doping. We observed a snap-through event for single-layer graphene/AgNW at a separation of AgNWs of 55 nm, beyond the graphene suspended over the nanowires. The adhesion force between the Atomic Force Microscopy (AFM) tip apex and the suspended graphene was measured as higher than the conformed one by 1.8 nN. The presence of AgNW modulates the Fermi energy level of graphene and reduces the work function by 0.25 eV, which results in n-type doping. Consequently, a lateral p-n-p junction is formed with single AgNW. The correlation Raman plot between G-2D modes reveals the increment of strain in graphene of 0.05% due to the curvature around AgNW, and 0.01% when AgNW lies on the top of graphene. These results provide essential information in inspecting the physical and electronic influences from AgNW.


Langmuir ◽  
2010 ◽  
Vol 26 (9) ◽  
pp. 6164-6166 ◽  
Author(s):  
Gang Lu ◽  
Xiaozhu Zhou ◽  
Hai Li ◽  
Zongyou Yin ◽  
Bing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document