scholarly journals Surface improvement of organic photoresists using a near-field-dependent etching method

2017 ◽  
Vol 8 ◽  
pp. 784-788 ◽  
Author(s):  
Felix J Brandenburg ◽  
Tomohiro Okamoto ◽  
Hiroshi Saito ◽  
Benjamin Leuschel ◽  
Olivier Soppera ◽  
...  

Surface flattening techniques are extremely important for the development of future electrical and/or optical devices because carrier-scattering losses due to surface roughness severely limit the performance of nanoscale devices. To address the problem, we have developed a near-field etching technique that provides selective etching of surface protrusions, resulting in an atomically flat surface. To achieve finer control, we examine the importance of the wavelength of the near-field etching laser. Using light sources at wavelengths of 325 and 405 nm, which are beyond the absorption edge of the photoresist (310 nm), we compare the resulting cross-sectional etching volumes. The volumes were larger when 325 nm light was employed, i.e., closer to the absorption edge. Although 405 nm light did not cause structural change in the photoresist, a higher reduction of the surface roughness was observed as compared to the 325 nm light. These results indicate that even wavelengths above 325 nm can cause surface roughness improvements without notably changing the structure of the photoresist.

2012 ◽  
Vol 523-524 ◽  
pp. 19-23 ◽  
Author(s):  
Hui Deng ◽  
Kazuya Yamamura

Single crystal SiC is one of the most attractive semiconductor materials for next generation power device applications. However, it is very difficult to be precisely machined due to its high hardness and chemical inertness. We evaluated the machining characteristics of 4H-SiC using different processes including diamond abrasives lapping, chemical mechanical polishing (CMP) and plasma assisted polishing (PAP). Scratches were introduced through diamond abrasives lapping due to the high hardness of diamond, which resulted in the worsening of surface roughness. A damage layer was observed in the cross-sectional transmission electron microscopy (XTEM) images. A scratch-free surface was obtained through CMP, but it’s not atomically flat since step/terrace structure couldn’t be clearly observed. PAP was newly proposed for the finishing of difficult to machine materials. In PAP, water vapor plasma oxidation and soft abrasive polishing were repeatedly conducted. Ceria which is much softer than SiC was used as the abrasive material. PAP was proved very effective to achieve surfaces out of scratches. Also, due to the low hardness of ceria, no damage layers were introduced. The roughness of PAP processed surface was decreased to about 0.1 nm rms. The surface was also observed by XTEM, which proved an atomically flat surface without crystallographical damage was obtained.


Author(s):  
Santosh Kumar ◽  
Vimal Edachery ◽  
Swamybabu Velpula ◽  
Avinash Govindaraju ◽  
Sounak K. Choudhury ◽  
...  

Clinching is an economical sheet joining technique that does not require any consumables. Besides, after its usage, the joints can be recycled without much difficulty, making clinching one of the most sustainable and eco-friendly manufacturing processes and a topic of high research potential. In this work, the influence of surface roughness on the load-bearing capacity (strength) of joints made by the mechanical clinching method in cross-tensile and lap-shear configuration is explored. Additionally, a correlating mathematical model is established between the joint strength and its surface parameters, namely, friction coefficient and wrap angle, based on the belt friction phenomenon. This correlation also explains the generally observed higher strength in lap-shear configuration compared to cross-tensile in clinching joints. From the mathematical correlation, through friction by increasing the average surface roughness, it is possible to increase the strength of the joint. The quality of the thus produced joint is analyzed by cross-sectional examination and comparison with simulation results. Experimentally, it is shown that an increment of >50% in the joint strength is achieved in lap-shear configuration by modifying the surface roughness and increasing the friction coefficient at the joint interface. Further, the same surface modification does not significantly affect the strength in cross-tensile configuration.


1994 ◽  
Vol 336 ◽  
Author(s):  
D.M. Tanenbaum ◽  
A. Laracuente ◽  
A.C. Gallagher

ABSTRACTA scanning tunneling microscope has been used to study the topology of the surface of device-quality, hydrogenated Amorphous silicon deposited by rf discharge from silane or “hot wire” CVD. The substrates were oxide-free single-crystal silicon or GaAs. Films studied were either grown in our laboratory and observed with no air exposure, or grown at other laboratories producing device-quality photovoltaic cells and viewed after air exposures of less than 30 Minutes. Thin films (10 nm) representing early growth stages appear significantly smoother than the thicker films. The topology of thick films (> 50 nm) has large variations over individual samples. While many regions can be characterized as “rolling hills”, atomically flat areas are sometimes observed nearby in our films. In most regions the observed slopes were 10% or less from the horizontal, but some steep-sided valleys, indicating incipient voids, are seen. Overall surface roughness measured on sub-Micron areas of our films is very inhomogeneous. Uniformity of the films grown off site was much better, although no atomically flat regions were observed, surface roughness can be estimated.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-22
Author(s):  
Marina Alterman ◽  
Chen Bar ◽  
Ioannis Gkioulekas ◽  
Anat Levin

Recent advances in computational imaging have significantly expanded our ability to image through scattering layers such as biological tissues by exploiting the auto-correlation properties of captured speckle intensity patterns. However, most experimental demonstrations of this capability focus on the far-field imaging setting, where obscured light sources are very far from the scattering layer. By contrast, medical imaging applications such as fluorescent imaging operate in the near-field imaging setting, where sources are inside the scattering layer. We provide a theoretical and experimental study of the similarities and differences between the two settings, highlighting the increased challenges posed by the near-field setting. We then draw insights from this analysis to develop a new algorithm for imaging through scattering that is tailored to the near-field setting by taking advantage of unique properties of speckle patterns formed under this setting, such as their local support. We present a theoretical analysis of the advantages of our algorithm and perform real experiments in both far-field and near-field configurations, showing an order-of magnitude expansion in both the range and the density of the obscured patterns that can be recovered.


1985 ◽  
Vol 56 ◽  
Author(s):  
B.D. HUNT ◽  
N. LEWIS ◽  
E.L. HALL ◽  
L.G. JTURNER ◽  
L.J. SCHOWALTER ◽  
...  

AbstractThin (<200Å), epitaxial CoSi2 films have been grown on (111) Siwafers in a UHV system using a variety of growth techniques including solid phase epitaxy (SPE), reactive deposition epitaxy (RDE), and molecular beam epitaxy (MBE). SEN and TEN studies reveal significant variations in the epitaxial silicide surface morphology as a function of the sillciqd formation method. Pinhole densities are generally greater than 107 cm-2, although some reduction can be achieved by utilizing proper growth techniques. Si epilayers were deposited over the CoSi2 films inthe temperature range from 550ºC to 800ºC, and the reesuulttinng structures have been characterized using SEM, cross—sectional TEN, and ion channeling measurements. These measurements show that the Si epitaxial quality increases with growth temperature, although the average Si surface roughness and the CoSi2 pinhole density also increase as the growth temperature is raised.


2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.


1999 ◽  
Vol 592 ◽  
Author(s):  
T. Hattori ◽  
H. Nohira ◽  
Y Teramoto ◽  
N. Watanabe

ABSTRACTThe interface state densities near the midgap were measured with the progress of oxidation of atomically flat Si(100) surface. It was found that the interface state distribution in Si bandgap changes periodically with the progress of oxidation. Namely, the interface-state density near the midgap of Si exhibits drastic decrease at oxide film thickness where the surface roughness of oxide film takes its minimum value, while that does not exhibit decrease at the oxide film thickness where the surface roughness takes its maximum value. In order to minimize interface state densities the oxide film thickness should be precisely controlled to within an accuracy of 0.02 nm.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Keisuke Matsumura ◽  
Yuji Sato ◽  
Noboru Kitagawa ◽  
Toshiharu Shichita ◽  
Daisuke Kawata ◽  
...  

2019 ◽  
Vol 12 (02) ◽  
pp. 1950008 ◽  
Author(s):  
Majid Shokoufi ◽  
Farid Golnaraghi

Diffuse optical spectroscopy is a relatively new, noninvasive and nonionizing technique for breast cancer diagnosis. In the present study, we have introduced a novel handheld diffuse optical breast scan (DOB-Scan) probe to measure optical properties of the breast in vivo and create functional and compositional images of the tissue. In addition, the probe gives more information about breast tissue’s constituents, which helps distinguish a healthy and cancerous tissue. Two symmetrical light sources, each including four different wavelengths, are used to illuminate the breast tissue. A high-resolution linear array detector measures the intensity of the back-scattered photons at different radial destinations from the illumination sources on the surface of the breast tissue, and a unique image reconstruction algorithm is used to create four cross-sectional images for four different wavelengths. Different from fiber optic-based illumination techniques, the proposed method in this paper integrates multi-wavelength light-emitting diodes to act as pencil beam sources into a scattering medium like breast tissue. This unique design and its compact structure reduce the complexity, size and cost of a potential probe. Although the introduced technique miniaturizes the probe, this study points to the reliability of this technique in the phantom study and clinical breast imaging. We have received ethical approval to test the DOB-Scan probe on patients and we are currently testing the DOB-Scan probe on subjects who are diagnosed with breast cancer.


Sign in / Sign up

Export Citation Format

Share Document