Review of an experiment to study the propane discharge in a closed production area

2021 ◽  
pp. 25-30
Author(s):  
Евгений Евгеньевич Простов

В статье представлены результаты экспериментальных исследований истечения пропана в различных направлениях в закрытом помещении. Рассматривался случай, когда источник истечения находился в багажнике автомобиля - имитация нахождения автомобиля с газомоторным топливом на станции технического обслуживания. Целью эксперимента являлось изучение механизма пространственного распространения газа в закрытом помещении для валидации математических моделей, используемых в программном комплексе ANSYS Fluent при моделировании поступления пропана в закрытое помещение. This scientific work describes a test conducted in a multidisciplinary test box on the testing training ground of the Orenburg branch of the All-Russian Research Institute for Fire Protection of EMERCOM of Russia. For the experiment there was built a room to simulate a service station (or parking box) for two cars. The frame was made of wooden bars and a plastic film was used to isolate the internal volume. The experimental installation consisted of a gas source with an internal diameter of 5 mm, located in the center of the room, and a system for gas supply and registration of experimental data from six gas analyzers SGOES-2 with a measurement range of pre-explosive concentrations from 0 to 100% of the lower concentration limit of flame propagation (NKPR) or a volume fraction from 0 to 1.7% with absolute ± 5% NKPR (in the range from 0 to 50% NKPR) and relative ± 10% NKPR (in the range from 50 to 100% NKPR) errors. In the center of the experimental room there was placed a car with the gas source in the trunk. All openings to the interior were insulated with plastic film and mounting foam. Natural cracks were left between the trunk lid and the body. The gas source is located in the trunk of the car and is directed towards the wide part of the trunk at an angle of 30 degrees relative to the floor (simulating the location of the gas cylinder used in cars). The gas analyzers were located along the wall, where the outflow is directed along the perimeter of the trunk, and one gas analyzer was located directly in the trunk behind the gas analyzer to control gas contamination. Propane has been released into the trunk with a constant flow rate of 2.8 m/h for 5 minutes. There were 8 test starts of the gas supply system (the flow vertically down), and then there were carried out 3 experiments per 3 series of tests in each. The purpose of the test was to study the mechanism of spatial gas propagation in an confined space for validation of mathematical models used in the ANSYS Fluent software package when modeling the propane intake into the confined space

2021 ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract This paper presents the comparative study of experimental, modeling, and simulation results that are performed using commercially available ANSYS Fluent software to analyze the separation kinetics of oil and water in a horizontal separator at various velocities and watercuts. The horizontal pipe separator used in this study has an internal diameter of 0.0762 m and a length of 10.3 m separating oil and water with specific gravities of 1.0 and 0.857 and watercuts ranging from 20 to 90%. The mixture velocities studied are 0.08, 0.13, and 0.20 m/s. Numerical simulations are done using the hybrid Eulerian-Eulerian multifluid VOF model to study the effect of watercut on the creaming of the oil layer and sedimentation of the water layer respectively. As the mixture velocities increased, the initial length of separation increased like experimental results. As the watercut increased, the separation of water enhanced, while the oil creaming improved with the lowering of the watercut as expected. Numerical results showed good agreement for water/dispersion interface predictions for all the conditions studied. The CFD results are compared against experimental results obtained by Othman in 2010 and agree with the trend of separation. The numerical simulations gave insights into the velocity profiles in each of the layers such as creamed oil, sedimented water, and the layer of emulsion that is not separated. Also, the numerical results are validated against the extended Gassies (2008) model incorporating correlation for turbulent time decay and oil volume fraction proposed by Dabirian et al in 2018.


Author(s):  
Cesar Martin Venier ◽  
Andrés Reyes Urrutia ◽  
Juan Pablo Capossio ◽  
Jan Baeyens ◽  
Germán Mazza

Purpose The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles. Design/methodology/approach For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups. Findings The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities. Originality/value A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.


1998 ◽  
Vol 08 (04) ◽  
pp. 623-643 ◽  
Author(s):  
SANJA MARUŠIĆ

A fluid flow through an ∊-periodic array of obstacles distributed on a hypersurface (filter) is considered. The study of the asymptotic behavior as ∊→0 for two critical sizes of obstacles ∊ and ∊2 gives two different laws describing a global flow. In this paper we study the case of an intermediate obstacle size ∊β, 1 < β < 2 and we prove the continuity of the filtration law in the low-volume fraction limit.


Author(s):  
Guangfa Yao

Immersed boundary method has got increasing attention in modeling fluid-solid body interaction using computational fluid dynamics due to its robustness and simplicity. It usually simulates fluid-solid body interaction by adding a body force in the momentum equation. This eliminates the body conforming mesh generation that frequently requires a very labor-intensive and challenging task. But accurately tracking an arbitrary solid body is required to simulate most real world problems. In this paper, a few methods that are used to track a rigid solid body in a fluid domain are briefly reviewed. A new method is presented to track an arbitrary rigid solid body by solving a transformation matrix and identifying it using a level set function. Knowing level set function, the solid volume fraction can be derived if needed. A three-dimensional example is used to study a few methods used to represent and solve the transformation matrix, and demonstrate the presented new method.


2021 ◽  
Vol 8 (3) ◽  
pp. 52-69
Author(s):  
Dr. Farhan Lafta Rashid Rashid ◽  
Dr. Haider Nadhom Azziz Azziz ◽  
Dr. Emad Qasem Hussein Hussein

In this paper, an investigation of using corrugated passages instead of circular crosssection passages was achieved in conditions simulate the case in the gas turbine blade coolingusing ANSYS Fluent version (14.5) with Boundary conditions: inlet coolant air temperature of300 K with different air flow Reynolds numbers (191000, 286000 and 382000). Thesurrounding constant hot air temperatures was (1700 K). The numerical simulations was done bysolving the governing equations (Continuity, Reynolds Averaging Navier-stokes and Energyequation) using (k-ε) model in three dimensions by using the FLUENT version (14.5). Thepresent case was simulated by using corrugated passage of 3 m long, internal diameter of 0.3 m,0.01 m groove height and wall thickness of 0.01 m, was compared with circular cross sectionpipe for the same length, diameter and thickness. The temperature, velocity distributioncontours, cooling air temperature distribution, the inner wall surface temperature, and thermalperformance factor at the two passages centerline are presented in this paper. The coolant airtemperature at the corrugated passage centerline was higher than that for circular one by(12.3%), the temperature distribution for the inner wall surface for the corrugated passage islower than circular one by (4.88 %). The coolant air flow velocity seems to be accelerated anddecelerated through the corrugated passage, so it was shown that the thermal performance factoralong the corrugated passage is larger than 1, this is due to the fact that the corrugated wallscreate turbulent conditions and increasing thermal surface area, and thus increasing heat transfercoefficient than the circular case.


Author(s):  
Feng Hong ◽  
Jianping Yuan ◽  
Banglun Zhou ◽  
Zhong Li

Compared to non-cavitating flow, cavitating flow is much complex owing to the numerical difficulties caused by cavity generation and collapse. In the present work, cavitating flow around a two-dimensional Clark-Y hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics. A cavitation model, coupled with the mixture multi-phase approach, and the modified shear stress transport k-ω turbulence model has been developed and implemented in this study to calculate the pressure, velocity, and vapor volume fraction of the hydrofoil. The cavitation model has been implemented in ANSYS FLUENT platform. The hydrofoil has a fixed angle of attack of α = 8° with a Reynolds number of Re = 7.5 × 105. Simulations have been carried out for various cavitation numbers ranging from non-cavitating flows to the cloud cavitation regime. In particular, we compared the lift and drag coefficients, the cavitation dynamics, and the time-averaged velocity with available experimental data. The comparisons between the numerical and experimental results show that the present numerical method is capable to predict the formation, breakup, shedding, and collapse of the sheet/cloud cavity. The periodical formation, shedding, and collapse of sheet/cloud cavity lead to substantial increase in turbulent velocity fluctuations in the cavitation regimes around the hydrofoil and in the wake flow.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Kuntal Ghosh ◽  
Shriya Vijay Pawar ◽  
Ayan Kumar Banerjee ◽  
Anirban Guha ◽  
Siddhartha P. Duttagupta

Abstract Sustainable power generation on solar photovoltaic (SPV) modules integrated lighter-than-air platforms (LTAPs) is a daunting task since they are exposed to variable environmental factors such as wind, ambient air pressure, and incident solar insolation. Among these factors, the wind plays a significant role in destabilizing the system from its equilibrium position and affects the power generation. In this paper, we proposed a methodology for estimating the dynamics of power generation due to the destabilized pitching under different wind vectors. An alternative to the conventional fluid–structure interaction, a semi-analytical methodology has been formulated, utilizing commercial ansys fluent software, to estimate the pitching characteristics of lighter-than-air platform (LTAP). This pitching characteristic has been mapped to the body inertial frame for investigating the incident solar insolation followed by determining the corresponding power generation. The consequences of the envelope contour function (ECF) are also incorporated while characterizing the power generation. Furthermore, this study also provides scope for the placement of the solar PV array on LTAP in order to minimize losses in generated onboard power under variable pitching conditions.


2018 ◽  
Vol 178 ◽  
pp. 05014 ◽  
Author(s):  
Andrzej Baier ◽  
Łukasz Grabowski ◽  
Łukasz Stebel ◽  
Mateusz Komander ◽  
Przemysław Konopka ◽  
...  

Numerical analysis of drag values of an electric race car's body. Silesian Greenpower is a student organization specializing in electric race car design. One of the most important issues during the design is reducing the vehicle drag to minimum and is done, mainly, by designing a streamline car body. The aim of this work was to design two electric cars bodies with different shape in Siemens NX CAD software, next a finite elements mesh was created and implemented into the ANSYS Workbench 16.1 software. Afterwards an aerodynamic analysis was carried out, using the finite element method (FEM). Simulations and calculations have been performed in ANSYS Fluent: CFD Simulation software. Computer simulation allowed to visualize the distribution of air pressure on and around car, the air velocity distribution around the car and aerodynamics streamline trajectory. The results of analysis were used to determine the drag values of electric car and determine points of the highest drag. In conclusion car body representing lower drag was appointed. The work includes theoretical introduction, containing information about finite element method, ANSYS and Siemens NX software and also basic aerodynamics laws.


2015 ◽  
Vol 1092-1093 ◽  
pp. 805-809
Author(s):  
Dong Lai Xie ◽  
Jin Hui Luo

With the large-scale usage of coal and gasoline, China has been the most serious SO2-polluted country in the world. SO2 can cause respiratory and cardiovascular disease, which does great harm to human health. Therefore, developing an air purifier to absorb trace SO2 is very necessary. According to the mechanism of SO2 absorption with the alkaline solution, we developed an air purifier with an purification capacity of 80m3 -100m3 per hour. The purification effect with different gas flow rates, absorbing liquids and initial SO2 concentration was tested. Test results indicated that the purifier had a very good absorption of trace SO2 for indoor air. A SO2 purification model in confined space was established and the purification effect of the purifier was simulated with ANSYS FLUENT 14.0.


2010 ◽  
Vol 654-656 ◽  
pp. 456-459 ◽  
Author(s):  
Thomas Schmoelzer ◽  
Svea Mayer ◽  
Frank Haupt ◽  
Gerald A. Zickler ◽  
Christian Sailer ◽  
...  

Intermetallic TiAl alloys with a significant volume fraction of the body-centered cubic β-phase at elevated temperatures have proven to exhibit good processing characteristics during hot-working. Being a strong β stabilizer, Mo has gained importance as an alloying element for so-called β/γ-TiAl alloys. Unfortunately, the effect of Mo on the appearing phases and their temperature dependence is not well known. In this work, two sections of the Ti-Al-Mo ternary phase diagram derived from experimental data are shown. These diagrams are compared with the results of in-situ high-temperature diffraction experiments using high-energy synchrotron radiation.


Sign in / Sign up

Export Citation Format

Share Document