Detection of Cancer Cells Based on Fluorescence Quenching Property of Black Phosphorus

2018 ◽  
Vol 45 (2) ◽  
pp. 0207030
Author(s):  
闫武娟 Yan Wujuan ◽  
王秀翃 Wang Xiuhong ◽  
姚倩 Yao Qian ◽  
乔鹏飞 Qiao Pengfei ◽  
Lang Marion C Lang Marion C
Nanoscale ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 5060-5064 ◽  
Author(s):  
Jie Zhou ◽  
Zhongjun Li ◽  
Ming Ying ◽  
Maixian Liu ◽  
Xiaomei Wang ◽  
...  

Herein, for the first time, a sensitive sensing platform for rapid detection of microRNA was developed by employing black phosphorus nanosheets as the fluorescence quenching material.


2020 ◽  
Vol 44 (16) ◽  
pp. 6186-6196 ◽  
Author(s):  
Mohanraj Ramachandran ◽  
Sambandam Anandan

Selective fluorescence enhancement by H2PO4−/H2P2O72− anions and maximum fluorescence quenching by Cu2+ ions were attained upon treatment with different types of anions and cations, respectively.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2425-2435 ◽  
Author(s):  
Jing Wang ◽  
Dong Liang ◽  
Zehua Qu ◽  
Ivan M. Kislyakov ◽  
Valery M. Kiselev ◽  
...  

AbstractBiological systems have high transparence to 700–1100-nm near-infrared (NIR) light. Black phosphorus quantum dots (BPQDs) have high optical absorbance in this spectrum. This optical property of BPQDs integrates both diagnostic and therapeutic functions together in an all-in-one processing system in cancer theranostic approaches. In the present study, BPQDs were synthesized and functionalized by targeting moieties (PEG-NH2-FA) and were further loaded with anticancer drugs (doxorubicin) for photodynamic–photothermal–chemotherapy. The precise killing of cancer cells was achieved by linking BPQDs with folate moiety (folic acid), internalizing BPQDs inside cancer cells with folate receptors and NIR triggering, without affecting the receptor-free cells. These in vitro experiments confirm that the agent exhibited an efficient photokilling effect and a light-triggered and heat-induced drug delivery at the precise tumor sites. Furthermore, the nanoplatform has good biocompatibility and effectively obliterates tumors in nude mice, showing no noticeable damages to noncancer tissues. Importantly, this nanoplatform can inhibit tumor growth through visualized synergistic treatment and photoacoustic and photothermal imaging. The present design of versatile nanoplatforms can allow for the adjustment of nanoplatforms for good treatment efficacy and multiplexed imaging, providing an innovation for targeted tumor treatment.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2397-2406
Author(s):  
Shijie Li ◽  
Fuyuan Zhang ◽  
Junping Wang ◽  
Wenjun Wen ◽  
Shuo Wang

AbstractRapid and high-sensitive detection of mycotoxins is believed to be of vital importance in assuring food safety. In this study, we developed a novel fluorescence immunochromatographic sensor (ICS) for the mycotoxin of zearalenone (ZEN) in cereals. This was done by using a black phosphorus-Au nanocomposite (BP-Au) as the 2D quenching platform. Herein, gold nanoparticles (AuNPs) were directly reduced on the surface of BP nanosheets (BPNSs) to form BP-Au nanocomposites, showing higher fluorescence (quantum dots, λEm = 525 nm) quenching efficiency compared to the BPNSs and AuNPs. The fluorescence quenching efficiency of the prepared BP-Au nanocomposite reached 73.8%, which was 1.73-fold and 1.44-fold higher than AuNPs and BPNSs, respectively. The density functional theory was also successfully used to explore the formation mechanism of the BP-Au nanocomposite. By introducing the quantum dots/BP-Au signal/quencher pair, a high-sensitive fluorescence quenching ICS (B-FICS) was developed for the detection and discrimination of ZEN with the limit of detection of 0.1 μg/l in pure working buffer. This was 2.5-fold more sensitive than AuNPs-based FICS (A-FICS). The B-FICS was successfully applied in real cereals detection with the sample limit of detection of 2 μg/kg. The successful construction of B-FICS offers a novel method for a rapid and high-sensitive detection of ZEN in cereals. It also provides a new practical application of 2D BPNSs in food safety sensing.


2018 ◽  
Vol 6 (35) ◽  
pp. 5613-5620 ◽  
Author(s):  
Wujuan Yan ◽  
Xiu-Hong Wang ◽  
Jingwen Yu ◽  
Xiaotong Meng ◽  
Pengfei Qiao ◽  
...  

Duplexed recognition of label-free breast cancer cells: a duplexed assay platform based on a BP nanoquencher allows simultaneous detection of two tumor markers within one run.


Acta Naturae ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 87-94 ◽  
Author(s):  
E. O. Kuzichkina ◽  
O. N. Shilova ◽  
S. M. Deyev

The protein photosensitizer miniSOG is a promising agent for photodynamic therapy. The genetically encoded phototoxins 4D5scFv-miniSOG and DARPin-miniSOG specifically bind to the HER2 receptor overexpressed on the surface of cancer cells and promote receptor-mediated internalization of HER2. We show that ingestion of proteins in a complex with the receptor reduces the fluorescent signal of the phototoxic module in endosomes. In order to clarify the mechanism of decrease in the fluorescence intensity of miniSOG-based proteins as they enter a cancer cell during internalization, we analyzed the influence of different factors, including low pH, proteolysis, cofactor reduction, and shielding, on changes in the fluorescence of photosensitizers. Shielding and absorption of miniSOG fluorescence by cell fluorophores, including cytochrome c, were found to contribute significantly to the changes in the fluorescent properties of miniSOG.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonio Buonerba ◽  
Rosita Lapenta ◽  
Anna Donniacuo ◽  
Magda Licasale ◽  
Elena Vezzoli ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ines Fasolino ◽  
Alessandra Soriente ◽  
Maria Caporali ◽  
Manuel Serrano-Ruiz ◽  
Maurizio Peruzzini ◽  
...  

AbstractNowadays, prostate cancer is the most widespread tumour in worldwide male population. Actually, brachytherapy is the most advanced radiotherapy strategy for the local treatment of prostate cancer. It consists in the placing of radioactive sources closed to the tumour side thus killing cancer cells. However, brachytherapy causes the same adverse effects of external-beam radiotherapy. Therefore, alternative treatment approaches are required for enhancing radiotherapy effectiveness and reducing toxic symptoms. Nanostructured exfoliated black phosphorus (2D BP) may represent a strategic tool for local cancer therapy because of its capability to induce singlet oxygen production and act as photosensitizer. Hence, we investigated 2D BP in vitro effect on healthy and cancer prostate cell behavior. 2D BP was obtained through liquid exfoliation. 2D BP effect on healthy and cancer prostate cell behaviors was analyzed by investigating cell viability, oxidative stress and inflammatory marker expression. 2D BP inhibited prostate cancer cell survival, meanwhile promoted healthy prostate cell survival in vitro by modulating oxidative stress and immune response with and without near-infrared light (NIR)-irradiation. Nanostructured 2D BP is able to inhibit in vitro prostate cancer cells survival and preserve healthy prostate cell vitality through the control of oxidative stress and immune response, respectively.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Wu Jifeng ◽  
Chen Xiaolin

On the basis of light microscopic observation, the ultrastructural localization of CEA in gastric cancer was studied by immunoelectron microscopic technique. The distribution of CEA in gastric cancer and its biological significance and the mechanism of abnormal distribution of CEA were further discussed.Among 104 surgically resected specimens of gastric cancer with PAP method at light microscopic level, the incidence of CEA(+) was 85.58%. All of mucinous carcinoma exhibited CEA(+). In tubular adenocarcinoma the incidence of CEA(+) showed a tendency to rising with the increase of degree of differentiation. In normal epithelia and intestinal metaplasia CEA was faintly present and was found only in the luminal surface. The CEA staining patterns in cancer cells were of three types--- cytoplasmic, membranous and weak reactive type. The ultrastructural localization of CEA in 14 cases of gastric cancer was studied by immunoelectron microscopic technique.There was a little or no CEA in the microvilli of normal epithelia. In intestinal metaplasia CEA was found on the microvilli of absorptive cells and among the mucus particles of goblet cells. In gastric cancer CEA was also distributed on the lateral and basal surface or even over the entire surface of cancer cells and lost their polarity completely. Many studies had proved that the alterations in surface glycoprotein were characteristic changes of tumor cells. The antigenic determinant of CEA was glycoprotein, so the alterations of tumor-associated surface glycoprotein opened up a new way for the diagnosis of tumors.


Sign in / Sign up

Export Citation Format

Share Document