scholarly journals The Role of Partially Hydrolyzed Polyvinyl Alcohol to the Enhancement of the Electrical Conductivity of Conductive Polymer

2019 ◽  
Vol 22 (2) ◽  
Author(s):  
Mas Ayu Elita Hafizah
2020 ◽  
Vol 38 (3A) ◽  
pp. 431-439
Author(s):  
Akram R. Jabur

Conductive polymer films were prepared of polyvinyl alcohol (PVA) with (0, 2, 4, 6, 8, and 10) wt. % multiwalled carbon nanotubes (MWCNTs) by electrospinning technique. The morphologies of the synthesized films were tested by scanning electron microscopy (SEM). Average fiber diameters gauged statically was (115nm) for (PVA/10 wt. % MWCNT film) while (170nm) for pure PVA electro spun film. Electrical conductivity (EC) of Polymeric nanofiber films improve by increasing MWCNT addition concentration from (3.69 × 10-7 S/ cm) for the pure (PVA) film to (1.24 ×10-2 S/cm) for the film with 10 wt. % MWCNT. The maximum stress of PVA film were increased by adding MWCNTs concentration, the modulus of elasticity was enhanced from 12.87 MPa for pure PVA to 49.89 MPa for PVA/8wt% MWCNT.


2021 ◽  
Vol 877 (1) ◽  
pp. 012037
Author(s):  
Thakir H. Abed ◽  
Meethaq. M. Abed ◽  
Burak Y. Kadem ◽  
Ahmad T. Jaiad

Abstract The main idea of this research is to design a rechargeable paper battery from local cheap and available materials. The practical part is represented by adding Polyvinyl alcohol (PVA) to conductive polymer (PSS PEDOT) with adding different mineral salts for then study the quantum of electrical conductivity and heat influence on electrical conductivity and acidity factors of the Electrolyte solution.The next step was to produce a rechargeable, flexible battery manufactured from regular cellulose paper, sulfone, and ionic solution.The measurements were made using modern laboratory devices to study the electrical properties, conductivity, resistance (Hall Effect), and voltage quantum of the ionic solution. Through the results we obtained, we noticed an increase in the conductivity of the ionic solution when adding mineral salts. The voltage quantum of one battery ranged between 0.3-0.3 volts, also several batteries were connected in series, and the result was 1.8 volts. Manufactured paper batteries can be recharged with a direct current source and recover their efficiency marked up 98-99%.


2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


2020 ◽  
Vol 1010 ◽  
pp. 638-644
Author(s):  
Mohd Pisal Mohd Hanif ◽  
Abd Jalil Jalilah ◽  
Mohd Fadzil Hanim Anisah ◽  
Arumugam Tilagavathy

Biopolymer-based conductive polymer composites (CPCs) would open up various possibilities in biomedical applications owing to ease of processing, renewable resource and environmentally friendly. However, low mechanical properties are a major issue for their applications. In this study, the investigated the conductivity of chitosan/ PEO blend films filled with carbonized wood fiber (CWF) prepared by solution casting. The effect of CWF was also investigated on tensile properties and their morphological surfaces. The tensile results from different ratios of chitosan/PEO blend films without CWF show that the tensile strength and modulus increased with the increase of chitosan content and chitosan/PEO blend film with 70/30 ratio exhibited the best combination of tensile strength and flexibility. However, a reduction of tensile strength was observed when CWF amount was increased while the modulus of the tensile shows an increment. The film also exhibited higher electrical conductivity as compared to low chitosan ratio. The addition of CWF greatly enhanced the conductivity three-fold from 10-10 to 10-6 S/cm. The electrical conductivity continued to increase with the increase of CWF up to 30wt%. The surface morphology by Scanning Electron Microscopy (SEM) exhibits the absence of phase separation for the blends indicating good miscibility between the PEO and chitosan. Incorporation of CWF into the blend films at 5wt% showed agglomeration. However, the increase of CWF created larger agglomerations that formed conductive pathways resulting in improved conductivity. FTIR analysis suggested that intermolecular interactions occurred between chitosan and PEO while CWF interacts more with the protons of PEO.


2021 ◽  
pp. 096739112110012
Author(s):  
Qingsen Gao ◽  
Jingguang Liu ◽  
Xianhu Liu

The effect of annealing on the electrical and rheological properties of polymer (poly (methyl methacrylate) (PMMA) and polystyrene (PS)) composites filled with carbon black (CB) was investigated. For a composite with CB content near the electrical percolation threshold, the formation of conductive pathways during annealing has a significant impact on electrical conductivity, complex viscosity, storage modulus and loss modulus. For the annealed samples, a reduction in the electrical and rheological percolation threshold was observed. Moreover, a simple model is proposed to explain these behaviors. This finding emphasizes the differences in network formation with respect to electrical or rheological properties as both properties belong to different physical origins.


1979 ◽  
Vol 18 (6) ◽  
pp. 353-356
Author(s):  
A. V. Pomosov ◽  
E. E. Usol'tseva ◽  
T. A. Koshkarova

2018 ◽  
Vol 22 (2) ◽  
pp. 1629-1648 ◽  
Author(s):  
Etienne Bresciani ◽  
Roger H. Cranswick ◽  
Eddie W. Banks ◽  
Jordi Batlle-Aguilar ◽  
Peter G. Cook ◽  
...  

Abstract. Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.


Sign in / Sign up

Export Citation Format

Share Document