scholarly journals Synthesis and Properties of Chitosan Nanoparticles CrossLinked with Tripolyphosphate

2021 ◽  
Vol 3 (1) ◽  
pp. 46-52
Author(s):  
Mostafa Yusefi ◽  
Pooneh Kia ◽  
Siti Nur Amalina Mohamad Sukri ◽  
Roshafima Rasit Ali ◽  
Kamyar Shameli

Chitosan nanoparticles (ChNPs) have been extensively examined for various biomedical applications due to their advantages include large surface area, biodegradability, and biocompatibility. The purpose of this research was to synthesize ChNPs using a simple ionic gelation technique by the interaction of low molecular weight chitosan (LMWC) and sodium tripolyphosphate (TPP) as a cross-linking agent. ChNPs, TPP, and LMWC were analysed by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra that indicated the formation of ChNPs, attributing to the rearrangement of the nanoparticles after adding the TPP cross-linker into the LMWC solution. XRD analysis exhibited that ChNPs were amorphous, due to the effect of TPP cross-linker. Dynamic light scattering showed the nano-dimension of ChNPs with a hydrodynamic size of 68.50 nm. Thus, the obtained results indicated that the properties of chitosan were improved through converting it into nanoparticles using TPP initiated ionic gelation procedure.

Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 117 ◽  
Author(s):  
Donata Konopacka-Łyskawa ◽  
Natalia Czaplicka ◽  
Barbara Kościelska ◽  
Marcin Łapiński ◽  
Jacek Gębicki

Calcium carbonate is a compound existing in living organisms and produced for many biomedical applications. In this work, calcium carbonate was synthesized by a CO2 bubbling method using ammonia as a CO2 absorption promotor. Glucose, fructose, sucrose, and trehalose were added into the reaction mixture to modify characteristics of precipitated calcium carbonate particles. To determine the polymorphic form of produced calcium carbonate particles, Fourier transform infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD) analysis were performed. Scanning electron microscopy (SEM) was used to estimate the size and shape of produced particles. Mixtures of vaterite and calcite were synthesized in all experiments. The percentage content of the vaterite in the samples depended on used additive. The highest concentration of vaterite (90%) was produced from a solution containing sucrose, while the lowest concentration (2%) was when fructose was added. Saccharides affected the rate of CO2 absorption, which resulted in a change in the precipitation rate and, therefore, the polymorphic composition of calcium carbonate obtained in the presence of saccharides was more varied.


2019 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Rajkumari Thagele ◽  
Archana Bagre ◽  
Mohan Lal Kori

The objective of present research work was to develop methotrexate loaded chitosan anchored shell nanoparticles for drug delivery in breast cancer. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate (STPP). The optimized nanoparticles were characterized for particle size and polydispersity index (PDI) revealed particle size were found to be between 57.08 nm to169.5 nm and PDI 0.252 to 0.639 respectively. The results signpost that stirring speed during ionic gelation reaction was also decisive parameters for the size of the nanoparticles obtained. Further characterization involved to show polymer-drug interaction was FTIR and DSC. This paper grants a revision of the physical factors elaborate in attaining nanoparticles in order to regulate the particle size of polymeric nanoparticles made from chitosan, without any surplus chemical treatment. Keywords: Breast cancer, Nanoparticles, Chitosan, Methotrexate


2017 ◽  
Vol 4 (1) ◽  
pp. 94-99
Author(s):  
Syamsul Falah ◽  
Sulistiyani Sulistiyani ◽  
Dimas Andrianto

Nanoparticles-based drug delivery has been recognized to improve the solubility of poorly water-soluble drugs, prolong the half-life of drug systematic circulation by reducing immunogenicity, and releases drugs at a sustain rate. The present study reports on the characterization of mahogany bark extract-loaded chitosan nanoparticles and their antioxidant activity.  Mahogany bark meal was extracted in boiled water for four hours.  Chitosan-sodium tripolyphosphate (STPP) nanospheres were sonicated with ultrasonicator to obtain chitosan-STTP nanocapsules for 30 and 60 min and then were dried with spray dryer. The chitosan-STPP nanocapsules loaded by mahogany extract were then analysed for surface morphology and physical state by scanning electron microscope (SEM) and X ray diffraction (XRD), respectively. Antioxidant activity of the nanoparticles was evaluated by scavenging the 1,1-diphenyl-2-picrylhydrazyl (DPPH) using free radical method. Based on SEM data, the nanoparticle shapes were viewed to adhere to spherical shape. Spherical chitosan-STTP nanoparticles loaded with mahogany bark extract were obtained in the size range of 480 ~ 2000 nm and 240 ~ 1000 nm for 30 and 60 min of ultrasonication time, respectively. The antioxidant activity of the nanoparticles was lower than that of the native mahogany bark extract. 


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4350
Author(s):  
Zunaira Alvi ◽  
Muhammad Akhtar ◽  
Nisar U. Rahman ◽  
Khaled M. Hosny ◽  
Amal M. Sindi ◽  
...  

Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (β-CD) and sulfobutyl ether₇ β-CD (SBE7 β-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 β-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5–348.4 nm, with polydispersity index (PDI) ranging from 0.302–0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75–88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.


2021 ◽  
Vol 3 (1) ◽  
pp. 37-45
Author(s):  
Mostafa Yusefi ◽  
Kamyar Shameli ◽  
Pooneh Kia ◽  
Hemra Hamrayev

Polysaccharide-based nanomaterials with significant biocompatibility and physiochemical features have been widely analyzed in modern biomedical nanotechnology. Chitosan-coating is an advantageous procedure to provide several pharmacological characteristics of chitosan on the reinforcement. Here, we fabricated polysaccharide nanocomposites using the facile ionic gelation method and sodium tripolyphosphate (TPP) cross-linker. The polysaccharide nanocomposites comprised natural cellulose and chitosan as reinforcement and coating agents, respectively. From the image of the scanning electron microscope, the nanocomposites indicated almost spherical dimensions with sizes below 60 nm. Results from X-ray powder diffraction and Fourier-transform infrared spectroscopy showed multifunctional properties of the nanocomposites related to both cellulose and chitosan. Therefore, the ionic gelation method is potentially appropriate to synthesize the polysaccharide nanocomposites for medically-related applications.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1681 ◽  
Author(s):  
Janaína Artem Ataide ◽  
Eloah Favero Gérios ◽  
Letícia Caramori Cefali ◽  
Ana Rita Fernandes ◽  
Maria do Céu Teixeira ◽  
...  

Bromelain, a set of proteolytic enzymes potential pharmaceutical applications, was encapsulated in chitosan nanoparticles to enhance enzyme stability, and the effect of different chitosan sources was evaluated. Chitosan types (i.e., low molecular weight chitosan, chitosan oligosaccharide lactate, and chitosan from shrimp shells) produced nanoparticles with different physicochemical properties, however in all cases, particle size and zeta potential decreased, and polydispersity index increased after bromelain addition. Bromelain encapsulation was higher than 84% and 79% for protein content and enzymatic activity, respectively, with low molecular weight chitosan presenting the highest encapsulation efficiency. Nanoparticle suspension was also tested for accelerated stability and rheological behavior. For the chitosan–bromelain nanoparticles, an instability index below 0.3 was recorded and, in general, the loading of bromelain in chitosan nanoparticles decreased the cohesiveness of the final suspension.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2010 ◽  
Author(s):  
Yattra Jampafuang ◽  
Anan Tongta ◽  
Yaowapha Waiprib

α- and β-Chitosan nanoparticles were obtained from shrimp shell and squid pen chitosan with different set of deacetylation degree (%DD) and molecular weight (MW) combinations. After nanoparticle formation via ionic gelation with sodium tripolyphosphate (TPP), the % crystallinity index (%CI) of the α- and β-chitosan nanoparticles were reduced to approximately 33% and 43% of the initial %CI of the corresponding α- and β-chitosan raw samples, respectively. Both forms of chitosan and chitosan nanoparticles scavenged superoxide radicals in a dose-dependent manner. The %CI of α- and β-chitosan and chitosan nanoparticles was significantly negatively correlated with superoxide radical scavenging abilities over the range of concentration (0.5, 1, 2 and 3 mg/mL) studied. High %DD, and low MW β-chitosan exhibited the highest superoxide radical scavenging activity (p < 0.05). α- and β-Chitosan nanoparticles prepared from high %DD and low MW chitosan demonstrated the highest abilities to scavenge superoxide radicals at 2.0–3.0 mg/mL (p < 0.05), whereas α-chitosan nanoparticles, with the lowest %CI, and smallest particle size (p < 0.05), prepared from medium %DD, and medium MW chitosan showed the highest abilities to scavenge superoxide radicals at 0.5–1.0 mg/mL (p < 0.05). It could be concluded that α- and β-chitosan nanoparticles had superior superoxide radical scavenging abilities than raw chitosan samples.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1129
Author(s):  
Luyara de Almeida Cavalcante ◽  
Laís Sibaldo Ribeiro ◽  
Mitsuo Lopes Takeno ◽  
Pedro Tupa Pandava Aum ◽  
Yanne Katiussy Pereira Gurgel Aum ◽  
...  

The present work demonstrates the production of chlorapatite (ClAp) through thermal decomposition of chemically treated fish scales, originating from an Amazon fish species (Arapaima gigas). The scales were treated with hydrochloric acid (HCl) solution for deproteinization. Afterwards, the solution was neutralized by sodium hydroxide (NaOH) treatment to obtain an apatite-rich slurry. The heat treatment was carried out at different temperatures including 600 °C, 800 °C, and 1000 °C. The powders obtained were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The XRD analysis and FTIR spectra confirmed the incorporation of chlorine into the apatite structure. The FTIR results showed absorption bands relative to the OH–, PO43− functional groups which are a characteristic of chlorapatite. Moreover, the intensity of the OH–Cl elongation could be observed. Chlorapatite Ca5(PO4)3Cl, NaCl, and NaCaPO4 phases were identified, achieving up to 87.4 wt% for ClAp. The SEM observations show that with increasing temperature, the ClAp obtained consists of slightly larger, more crystalline grains. Furthermore, the grains ranged in size, between 1-5 μm and ClAp1000 sample recorded crystallinity of 84.27%. ClAp and NaCaPO4 can be used in electronics as phosphor materials due to their luminescence and biomedical applications.


2018 ◽  
Vol 10 (5) ◽  
pp. 60 ◽  
Author(s):  
N. K. Al-nemrawi ◽  
S. S. M. Alsharif ◽  
R. H. Dave

Objective: The aim of this work was to prepare chitosan nanoparticles (CS NPs) using sodium tripolyphosphate (TPP) as crosslinker and to study the effect of chitosan polymeric properties and experimental conditions on the properties and stability of NPs.Methods: CS NPs were prepared by ionic gelation method, using TPP as a crosslinker. The particle size (PS), polydispersity index (PDI), zeta potential (ZP) and the morphologies of the NPs were studied. CS NPs prepared by varying the concentration of TPP, Chitosan molecular weight and its degree of deacetylation, the stirring speed, the rate of TPP addition and the freeze-drying method to study the effect of these variables on the NPs. The stability of the CS NPs was evaluated by storing aqueous suspensions of NPs and comparing the PS, PDI and ZP at the beginning and the end of the experiment.Results: This study shows that the PS, ZP and dispersity of the NPs depend on the chitosan polymeric properties and experimental conditions. The NPs sizes range between 145.73 and 724.23 nm. They all carried positive charges ranging between+4.32 and+43.67 mV. Most of the NPs have the same sizes after freeze-drying, but showed higher monodispersity and ZP, indicating higher stability. After twenty days of studying the stability, the NPs that had low ZP showed a large increment in size in comparison to the highly charged NPs.Conclusion: In conclusion, the polymeric properties and formulation variables in the ionic gelation method have a great influence on the CS NPs formed.


Sign in / Sign up

Export Citation Format

Share Document