scholarly journals Synthesis of 5-hydroxy-10-R-benzo[a]phenazine-12-oxides by cyclization of 2-arylamino-1,4-naphthoquinone-1-oximes under the action of nitrating mixture

2020 ◽  
Vol 61 (2) ◽  
pp. 12-23
Author(s):  
Leonid M. Gornostaev ◽  

The synthesis of рolycyclic quinoid compounds, which exhibit a wide range of biological activity is one of the most promising and actively developing areas of the fine organic synthesis. Heterocyclic compounds including those that can be donors of nitrogen oxide NO occupy a special place among biologically active structures. These substances include a number of N-oxides, e.g., 1,2-diazet-1,2-dioxides, furoxanes and their benzo analogs, and N,N′-pyrazole dioxides. The reason for the high biological activity of N-oxides of nitrogenous heterocycles, which cannot easily generate nitrogen oxide NO may be their oxidative properties. Thus, N-oxides of nitrogenous heterocycles are of interest due to their high biological activity. We have developed an approach to the synthesis of 5-hydroxy-10-R-benzo[a]phenazine-12-oxides that contain the N-oxide fragment, which makes these compounds promising for studying their biological activity. We have demonstrated that the treatment of 2-arylamino-1,4-naphthoquinones with hydroxylamine in ethanol at 50-60 °С leads to selective oximation at position 1 and the formation of 2-arylamino-1,4-naphthoquinone-1-oximes. It has been shown that the interaction of 2-arylamino-1,4-naphthoquinone-1-oximes with the nitrating mixture in acetic acid results in the formation of 5-hydroxy-10-R-benzo[a]phenazine-12-oxides. Our work is a continuation of the study on the interactions of 2-arylamino-1,4-naphthoquinones and 4-arylamino-1,2-naphthoquinones with nitrosylsulfuric acid in acetic acid and the interaction of 2-alkyl(benzyl)amino-1,4-naphthoquinones with nitrosylsulfuric acid or nitrating mixture in acetic acid. The former reactions lead to the formation of 3-R-benzo[b]phenazine-6,11-dione-5-oxides and 9-R-benzo[a]phenazine-5,6-dion-7-oxides, respectively. The latter reaction leads to the formation of 2-alkyl(aryl)naphtho[2,1-d][1,3]oxazole-4,5-dione-4-oximes and 2-alkyl(aryl)-1-hydroxy-1H-naphtho[2,3-d]imidazole-4,9-dione as main products.

2017 ◽  
Vol 7 (4) ◽  
pp. 597-603
Author(s):  
N. A. Ushakova ◽  
R. V. Nekrasov ◽  
E. S. Brodskiy ◽  
V. V. Voznesenskaya ◽  
A. A. Kozlova ◽  
...  

Previously, it was shown that B. subtilis B-8130 produce bactericides and biologically active substances while fermenting different phyto-substrates. The bacilli release somatostatin-like peptide during solid-state fermentation of beet pulp sugar, sea-buckthorn leaves and flax seeds. The growth of bacterial culture is accompanied by the formation of biofilm that encapsulates phyto-carriers. The combination of all above factors determines high biological activity of probiotics and their effects on digestion in animals. We tested the addition of 0.1% B. subtilis B-8130 fermented substrate to the pig ration. The experiments showed higher weight gain, lowered daily feed expenses and improved survival. We found substantial changes in morphology of the small intestine epithelial cells associated with intensive absorption of feed nutrients in pigs that were fed with fermented sea-buckthorn leaves. This suggests influence of probiotics on digestion mediated by hormonal system.


2021 ◽  
Author(s):  
Lali Tabatadze ◽  
Neli Sidamonidze ◽  
Darejan Gulbani ◽  
Darejan Iremashvili

Carbohydrate derivatives are distinguished with wide range of biological activity which is proven by successful usage of preparations made of Carbohydrate based in different branches of pharmaceutical chemistry. As a result of research of Carbohydrate compounde, the relationship between unique structure and its chemical and biological properties has been studied. Input of bulk liphophilic adamantine moiety in the proved medications or biologically active molecule in most cases is improved molecule’s biological characteristic, drug’s lipopilycity and prolonged actin is enhanced, and at the same time toxicity and side negative effects is reduced.We studied the reactions of acetylaryl glycosides with phenylsulfonyl chloride in the presence of a benzoyl peroxide catalyst. A new sulfur-containing glucoside was synthesized: Hepta-O-acetyl-1-O-(2-chloro-3-phenyl thio propyl)-β-D-maltose. The bactericidal properties of β-O-(2-chloro-3-phenyl thio propyl)-D-maltose of the obtained product after deacetylation were studied. With the help of the com­­pu­ter program PASS (Prediction of Activity Spectra for Substance) onlaines were able to predict the range of activity of substances. The obtained result established correlations on bactericidal properties between biological activity and the intended biological activity. The structure of the synthesized compounds was determined by physico-chemical research methods.


Author(s):  
Tatiana Tanashkina ◽  
Alena Piankova ◽  
Anna Semenyuta ◽  
Alexey Kantemirov ◽  
Yury Prikhodko

Introduction. Buckwheat grain has long been used in food technology. However, its aboveground part remains understudied even though it is richer in biologically active substances than grain. The research objective was to evaluate the potential of buckwheat grass as a raw material for functional tea beverages. Study objects and methods. The research featured the lower and upper parts of the stem, leaves, and flowers of common buckwheat, as well as buckwheat tea beverages. The content of polyphenol compounds was determined by the Folin-Ciocalteu method, while the amount of rutin was measured by HPLC analysis. Sensory properties were analyzed by standard methods and quality score, and antioxidant activity – by DPPH radical scavenging method. Results and discussion. The sensory analyses proved that the best tea beverages were made from the upper part of the plant: the samples had a strong smell of meadow grass and honey. The taste of the samples was pleasant, sweetish, with a honey and light floral aftertaste. As the total score (maximum score – 20) increased, the tea samples were arranged in the following order: lower stem (14.3) > upper stem (16.8) > leaves, (18.5) > blend – mix of leaves, flowers, and upper stem (18.6) > flowers (19.3). Polyphenol compounds were found in all parts of the plant: flowers – 6.67%, leaves – 5.71%, blend – 5.45%, upper and lower stem – 1.92 and 1.32%, respectively. Only 30–40% of buckwheat grass polyphenol compounds were found in tea beverages. Most of them were in the samples prepared from leaves and flowers – 1.78 %. Rutin made up most of the polyphenol compounds found in the leaves (5.05%), but its content was lower in other parts of the plant: 3.43% in the blend, 3.03% in the flowers, 1.08 and 0.76% in the upper and lower stem. Except for the lower stem samples, the tea contained from 15 to 75% of the daily rutin intake. All the tea samples showed antioxidant activity: flowers – 66.7%, leaves – 62.3%, and blend – 52.5%. In terms of ascorbic acid, it was 69, 64, and 52 μmol/g dry matter, respectfully. The same samples demonstrated antiradical activity. Conclusion. Common buckwheat grass can serve as a raw material for tea beverages. Buckwheat tea is a natural functional food product with zero caffeine. They have a pleasant taste and aroma. They owe their high biological activity to the high content of rutin and other polyphenol compounds.


2018 ◽  
Vol 6 ◽  
pp. 1211-1217
Author(s):  
Alexander Zlatkov ◽  
Javor Mitkov ◽  
Maya Georgieva

The synthesis of new oxazole derivatives was carried out under Davidson synthesis conditions from O-acylacyloins with an 8-thiosubstituted 1,3,7-trimethylxanthine skeleton and ammonium acetate in a 1:10 ratio in glacial acetic acid media. The starting O-acylacyloins were obtained as products from the interaction of the sodium salt of 2-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)acetic acid and a-haloketones. The structures of the new compounds were proven by microanalyses and spectral data. The PASS online web application was used to predict the biological activity spectra of the obtained derivatives and to determine the most promising biological effects for further experimental testing. Thus, it has been shown that the synthesized compounds are a promising class for the creation of substances with a wide range of biological activity. The substrate/metabolite specificity of the tested compounds was also predicted using SMP web-service. The studied compounds were considered to perform most probably with CYP2 substrate activity.


2006 ◽  
Vol 6 (2) ◽  
pp. 3337-3379 ◽  
Author(s):  
P. Vaattovaara ◽  
P. E. Huttunen ◽  
Y. J. Yoon ◽  
J. Joutsensaari ◽  
K. E. J. Lehtinen ◽  
...  

Abstract. Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to being significant contributors to the nucleation mode processes, accelerate the growth of freshly nucleated particles and increase their survival probability to CCN and even larger radiatively active particle sizes. The results give new insights to the coastal/marine particle formation, growth, and properties. The marine biota driven secondary organic contributions to coastal/marine particle formation and composition can be anticipated in other species specific biologically active oceans and fresh-waters areas around the world and thus, they may be significant also to the global radiative bugdet, atmosphere-biosphere feedbacks, and climate change.


Synthesis ◽  
2019 ◽  
Vol 52 (02) ◽  
pp. 159-188 ◽  
Author(s):  
Alexey V. Kletskov ◽  
Nikolay A. Bumagin ◽  
Fedor I. Zubkov ◽  
Dmitry G. Grudinin ◽  
Vladimir I. Potkin

The chemistry of isothiazoles is being intensively developed, which is evidenced by the wide range of selective transformations involving the isothiazole heterocycle and the high biological activity of its derivatives that can be used as effective new drugs and plant protection chemicals. Some representatives of isothiazoles have proven to be synergists of bioactive substances, which opens the way to lower the doses of drugs used and is especially important in cancer chemotherapy. In the framework of the present review, the accomplishments in the chemistry of isothiazoles over the past 18 years are examined, whilst current strategies for the synthesis of isothiazole-containing molecules and key directions of studies in this field of heterocyclic chemistry are discussed. Considerable attention is paid to chlorinated isothiazoles and strategies for their use in the synthesis of biologically active substances. In addition, a comprehensive review of existing literature in the field of metal complexes of isothiazoles is given, including the results and prospects for the practical use of isothiazole–metal complexes as catalysts for cross-coupling reactions in aqueous and aqueous–alcoholic media (‘green chemistry’).1 Introduction2 Synthesis by Ring-Forming Reactions2.1 Intramolecular Cyclization2.2 (4+1)-Heterocyclization2.3 (3+2)-Heterocyclization2.4 Syntheses by Ring Transformations3 Isothiazoles by Ring Functionalization Reactions: Nucleophilic Substitution, Cross-Coupling and Side-Chain Functionalization4 Selected Syntheses of Biologically Active Isothiazole Derivatives5 Isothiazoles in the Synthesis of Transition-Metal Complexes and in Metal-Complex Catalysis6 Conclusion


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 663 ◽  
Author(s):  
Mikas Sadauskas ◽  
Roberta Statkevičiūtė ◽  
Justas Vaitekūnas ◽  
Rolandas Meškys

A plant auxin hormone indole-3-acetic acid (IAA) can be assimilated by bacteria as an energy and carbon source, although no degradation has been reported for indole-3-propionic acid and indole-3-butyric acid. While significant efforts have been made to decipher the Iac (indole-3-acetic acid catabolism)-mediated IAA degradation pathway, a lot of questions remain regarding the mechanisms of individual reactions, involvement of specific Iac proteins, and the overall reaction scheme. This work was aimed at providing new experimental evidence regarding the biodegradation of IAA and its derivatives. Here, it was shown that Caballeronia glathei strain DSM50014 possesses a full iac gene cluster and is able to use IAA as a sole source of carbon and energy. Next, IacE was shown to be responsible for the conversion of 2-oxoindole-3-acetic acid (Ox-IAA) intermediate into the central intermediate 3-hydroxy-2-oxindole-3-acetic acid (DOAA) without the requirement for IacB. During this reaction, the oxygen atom incorporated into Ox-IAA was derived from water. Finally, IacA and IacE were shown to convert a wide range of indole derivatives, including indole-3-propionic acid and indole-3-butyric acid, into corresponding DOAA homologs. This work provides novel insights into Iac-mediated IAA degradation and demonstrates the versatility and substrate scope of IacA and IacE enzymes.


Author(s):  
Melnikov A.S. ◽  
Meshcheryakova S.A.

Uracil derivatives containing various N1, N3 substituents are characterized by various pharmacological and biological activities. Since the beginning of the XXI century, among them, new biologically active substances have been discovered that have pronounced antiparasitic, antibacterial, antioxidant properties. Known that modern methods of treatment and prevention of many diseases involve the inclusion of substances that have the ability to stimulate immune processes. Such compounds, in particular, include derivatives of nucleoside bases with high biological activity. Derivatives of 6-methyluracil containing a hydrazone system are widely studied in the treatment of Alzheimer's disease, antifungal, antiviral, antianginal, anti-eczema and other types of activity. The study of the alkylation of 6-methyluracil, which contains hydrazone systems in the role of pharmacophore fragments, is one of the topical trends in the synthesis of new chains of biologically active compounds. Purpose: For this purpose, we studied the alkylation of 6-methyl-3- (1,1-dioxidothietan-3-yl) pyrimidin-2,4 (1H, 3H)-dione with 1-chloropropan-2-one and the interaction of the resulting N1- 2-oxopropyl derivative with various hydrazines. Materials and Methods: The individuality of the new compounds was confirmed by the method of thin layer chromatography and determination of the melting point. The structure of the synthesized substances was confirmed by elemental analysis and NMR spectroscopy. Statistical data processing was carried out using variational analysis using the STATISTICA 8.0 software package. Student's test was chosen as a criterion for the representativeness of statistical processing. A preliminary analysis of toxicity and types of potential biological activity was carried out in silico using the resources of the Internet platform Way2Drag. Conclusions: Methods of synthesis have been developed and the most probable types of biological and pharmacological influence have been statistically processed, proceeding from the value of the probability of being active and the probability of inertness. Based on the analysis of data, modeled types of biological activity, some patterns of "structure-activity" are determined. In the conclusion, further directions of research are identified.


Author(s):  
S.D. Polischuk ◽  
G.I. Churilov ◽  
D.G. Churilov ◽  
V.V. Churilova ◽  
I.S. Arapov ◽  
...  

Биологическая активность наночастиц зависит от физико-химических характеристик частиц. Химическое взаимодействие наночастиц с жидкой средой, по-нашему мнению, является одним из определяющих факторов их биологической активности. Изменение рН среды за счет высокой восстановительной способности наночастиц повышает проницаемость мембран, способствуя биоаккумуляции наночастиц или усилению их биосовместимости. Данная способность зависит от той информации (тех свойств), которой обладают частицы разных размеров, состава и физико-химических характеристик. Высокой биологической активностью обладают наночастицы металлов железа, кобальта, меди размером 35-60 нм в количестве 0,01-10,0 г на тонну семян, полученные низкотемпературной металлизацией нанодисперсных порошков гидроксидов. Наночастицы оксидов металлов размером 20-80 нм снижают рост и развитие растений, и в отличие от наночастиц металлов, они аккумулируются в структурах растений, понижая активность фитогормонов и ферментов. При этом аномальная дозовая зависимость эффекта в области сверхнизких концентраций биологически активных веществ зарегистрирована на уровне ответа не только клетки или целостного организма (растения), но и отдельных биомакромолекул (ферментов). В наших исследованиях мы обнаружили, что всякий раз при введении сверхмалых доз биологически активного вещества в организм животного, клеточную культуру или в модельную систему, содержащую суспензиюмембран, отмечается изменение структурных характеристик мембран. В свою очередь изменения структуры мембран могут приводить к изменению функционального состояния клетки, а наличие полимодальности в ответе можно объяснить сменой механизма действия вещества в том или ином концентрационном интервале на структуру мембраныThe biological activity of nanoparticles depends on the physical-chemical characteristics of the particles. The chemical interaction of nanoparticles with a liquid medium, in our opinion, is one of the determining factors in their biological activity. A change in the pH of the medium due to the high reducing bility of nanoparticles increases the permeability of membranes, promoting bio-accumulation of nanoparticles or enhancing theirbio-compatibility. This ability depends on the information (those properties) of particles of different sizes, their composition and physical-chemical characteristics. Metal nanoparticles of iron, cobalt, copper of 35-60 nm in the amount of 0.01-10.0 g per ton of seeds, obtained by low-temperature metallization of nanodispersed hydroxide powders, possess high biological activity. Nanoparticles of metal oxides with a size of 20-80 nm reduce plant growth and development, and unlike metal nanoparticles, they accumulate in plant structures, reducing the activity of phytohormones and enzymes. In this case, an abnormal dose dependence of the effect of ultra-low concentrations of biologically active substances is recorded at the level of response not only of the cell or the whole organism (plant), but also of individual bio-macromolecules (enzymes). The studies showed that every time an ultra-low dose of a biologically active substance is introduced into an animal, a cell culture, or into a model system containing a suspension of membranes, a change in the structural characteristics of the membranes is noted. In turn, changes in the structure of membranes can lead to a change in the functional state of the cell, and the presence of polymodality in the response can be explained by a change in the mechanism of action of a substance in a particular concentration range on the membrane structure.


2021 ◽  
Vol 14 (12) ◽  
pp. 1311
Author(s):  
Victor Masip ◽  
Ángel Lirio ◽  
Albert Sánchez-López ◽  
Ana B. Cuenca ◽  
Raimon Puig de la Bellacasa ◽  
...  

Pyrido[2,3-d]pyrimidin-7(8H)-ones have attracted widespread interest due to their similarity with nitrogenous bases found in DNA and RNA and their potential applicability as tyrosine kinase inhibitors. Such structures, presenting up to five diversity centers, have allowed the synthesis of a wide range of differently substituted compounds; however, the diversity at the C4 position has mostly been limited to a few substituents. In this paper, a general synthetic methodology for the synthesis of 4-substituted-2-(phenylamino)-5,6-dihydropyrido[2,3-d]pyrimidin-7(8H)-ones is described. By using cross-coupling reactions, such as Ullmann, Buchwald–Hartwig, Suzuki–Miyaura, or Sonogashira reactions, catalyzed by Cu or Pd, we were able to describe new potential biologically active compounds. The resulting pyrido[2,3-d]pyrimidin-7(8H)-ones include N-alkyl, N-aryl, O-aryl, S-aryl, aryl, and arylethynyl substituents at C4, which have never been explored in connection with the biological activity of such heterocycles as tyrosine kinase inhibitors, in particular as ZAP-70 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document