scholarly journals MAIN PROBLEMS OF MANUFACTURING ASPHALT CONCRETE MIXTURES IN LITHUANIA/ASFALTBETONIO MIŠINIŲ GAMYBOS SVARBIAUSIOS PROBLEMOS LIETUVOJE

2000 ◽  
Vol 6 (1) ◽  
pp. 39-45
Author(s):  
Donatas Čygas

The article describes the main problems of manufacturing asphalt concrete mixtures at the factories under Ministry of Communication in the Republic of Lithuania. The Lithuanian Road Network is up to 21.122 km of state roads. 1.455 km of them are motorways, 3.415 km—national roads and 16.251 km—regional roads. Half of the state roads in Lithuania are paved with asphalt concrete. 98% of the motorways and 36% of the regional roads have asphalt pavement. Asphalt concrete pavement resistance to corrosion can be increased by improving asphalt concrete mixture production technology: ie by updating technological equipment, changing technological conditions and developing new methods of asphalt concrete mixture production. Therefore, the updating of asphalt concrete mixture production technologies is a very important factor for improving road operating properties and ensuring proper duration of asphalt concrete pavements. Here is the essence of the new separate successive technology: crushed stone and sand are mixed with bitumen in the main asphalt concrete mixer, the amount of bitumen being calculated according to the bitumen absorption in the materials. Then the asphalt cement material produced in a separate high-speed mixer is passed, and the whole mixture is remixed in the main mixer and supplied to the customer. Both separate consequent technologies differ from each other in the order of supplying asphalt cement material into the main mixing unit. Separate successive technology was theoretically grounded by the correlation between the technological thickness of bituminous film and the chemical-mineralogical composition and size of constituents, by the correlation between the particle size and their capability to compose aggregates, by the emergence of the oriented binding material coating on the technological bituminous film encoating mineral particles. Special attention is given to the manufacturing of asphalt cement material in a separate high-speed mixer (3 Table). It was theoretically grounded that mineral filler passing through the intensive shift zone between the paddle ends of the high-speed mixer and the walls of mixing chamber disintegrate and new active surfaces become visible. The molecular structure changes and free radicals appear. This intensive mixing guarantees high bitumen adsorption on the surface of mineral filler, which increases asphalt concrete resistance to corrosion and its durability, improves ecological environment in the asphalt concrete plant. In order to confirm the reliability of research results and explain correlative and regressive regularity, statistical data were processed applying statistical data processing programming system “STATGRAPHICS”. The linear regressive analysis for determining close relations of separate asphalt concrete quality indicators with speed gradient of asphalt cement material shift in a high-speed mixer was performed. Therefore, the possibility to change shift speed gradient from 3000 to 5000 1/s is provided in terms of reference for manufacturing asphalt concrete mixing plant. Correlation between separate asphalt concrete quality indicators and asphalt cement material shift speed gradient as well as bitumen amount in the asphalt cement material was determined by multi-dimensional regressive analysis of experimental data. The calculated correlation factor squared (R2) and F criteria indicate the adequacy and reliability of the multidimensional regression model.

2019 ◽  
Vol 16 (2) ◽  
pp. 76-83
Author(s):  
Eko Wiyono ◽  
Anni Susilowati

Filler function to fill cavities between aggregate granules which can affect the characteristics of asphalt concrete mixture. The purpose of this study is to obtain the characteristics of AC-WC asphalt concrete mixtures and determine the optimum variation of filler content on AC-WC asphalt concrete mixtures using cement fillers and anti-stripping additives that meet the specifications of Bina Marga 2010. ; 5.5%; 6%; 6.5%; 7%; 7.5%; and 8% each made with a variation of cement filler of 1%; 3%; 5%; 7%; and 9%; the addition of Wetfix Be 0.3% to the asphalt. The method of implementation is by mixing the wetfix Be first with asphalt, then aggregating according to the ideal mix gradation proportions. Dependent variables (research parameters) include density, percent cavity in aggregate (VMA), percent cavity filled with asphalt (VFB), percent cavity against mixture (VIM), stability, melt, and results for Marshall (MQ). Marshall testing method based on SNI 06-2489-1991. The results of the study obtained KAO in 1% cement filler variation; 3%; 5%; 7%; and 9%, each at 6.75%; 6.5%; 6.35%; 6.5% and 7.125%. KAO average of 6.65%. The range of cement filler levels which still meet the Marshall parameters at 2% cement filler up to 9%. The optimum cement filler content for asphalt concrete mixture is 5.5%, with a VMA value of 19.19%; VFB 77.12%; VIM 4.39%; Stability of 1670.48kg; melting 4.80mm, and MQ 349.78 kg / mm, meeting the specifications of Bina Marga 2010.


2002 ◽  
Vol 8 (1) ◽  
pp. 73-76
Author(s):  
Kęstutis Vislavičius

The problem of calculating the quantity of a required bitumen is formulated as follows: from certain mineral materials the grading curves and narrow fraction bitumen receptivities which are known to determine the composition of an asphalt concrete mixture that satisfies grading limitations of mineral materials and contains minimum quantity of a required bitumen. Mathematical analogues of the problem are presented. A personal computer programme for calculating the minimum quantity of a required bitumen is prepared, and some example problems are solved. An analysis of the results is presented.


2007 ◽  
Vol 34 (5) ◽  
pp. 589-597 ◽  
Author(s):  
K Kandil ◽  
A O Abd El Halim ◽  
Y Hassan ◽  
A Mostafa

The extreme environmental conditions in Canada require the use of asphalt cement that can provide a high resistance to low-temperature cracking during the winter season and a high resistance to rutting due to the elevated temperatures in the summer. Earlier studies showed that such desired improvements in the quality of asphalt cement could be achieved using polymer-modified asphalt (PMA) cement. This paper presents a three-phase experimental program that was carried out to evaluate the expected performance of asphalt concrete mixtures with PMA compared to asphalt concrete mixtures with conventional and air-oxidized asphalt binders. The results of this study show that PMA in asphalt concrete mixes would significantly improve the resistance to cracking (loading and low-temperature). Key words: asphalt mixtures, polymer-modified asphalt, conventional asphalt cement, air-oxidized asphalt, testing.


Author(s):  
Anna Trautvain

the paper presents an analysis of information quality assurance of production of asphalt concrete mixtures, as well as the study of the relationship of the qualitative composition of asphalt concrete mixtures and physical and mechanical characteristics of asphalt concrete pavement. The study of the main characteristics was carried out on the example of asphalt concrete type B and grade I and crushed-mastic asphalt concrete – SchMA-20. It is established that the deviation of asphalt mixtures in composition from the required values leads to their under-compaction in the pavement. It is also established that increasing the number of inconsistencies in the asphalt concrete mixture leads to an increase of physical-mechanical characteristics that differ from the requirements of GOST 9128-2013 and GOST 31015-2002 respectively. As an information base for the assessment of the influence of granulometry of the mineral part of asphalt concrete, as well as the amount of bitumen on the main characteristics of asphalt concrete, the data of the current ACP of Belgorod region were used. Analysis of the particle size distribution was carried out using a laser analyzer of asphalt ABA7/35B. The obtained data became the basis for a further study of the influence of various parameters on the properties of asphalt mixes, as well as improving the efficiency of the asphalt mix production management system.


2003 ◽  
Vol 9 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Henrikas Sivilevičius

Errors of optimal composition asphalt concrete mixture designed in the laboratory and their importance for road construction are investigated. After the analysis of asphalt concrete production according to the traditional technology, factors influencing its structure, characteristics and quality are systematised. Mathematical models of dependence of medium quadratic deviations of siftings of finite dosed mineral materials through control sieves on the means of siftings are estimated by a regressive analysis. Variations of grading of hot fractions 0–5 mm and 5–15 mm as well as cold mineral powder sieved through technological sieves of mixing equipment and influence of errors of dosing these mineral materials in the produced mixture on the stability of quantity of containing mineral components (crushed stone, sand and mineral filler) are identified. The main trends of asphalt concrete structure and handling of its equipment methods improvement are presented.


Author(s):  
Андронов ◽  
Sergey Andronov ◽  
Задирака ◽  
Aleksey Zadiraka

Experiments on the introduction of basalt fiber with various density and length of cutting into the composition of the dispersed-reinforced asphalt mixture were carried out, laboratory tests of asphalt concrete samples were carried out, the optimal density and length of cutting basalt fiber for introduction into asphalt concrete mixtures In transport construction, asphalt concrete is widely used, which is prone to cracking, peeling, chipping, formation of stakes, waves and depressions. The way to increase the resistance of asphalt concrete to external loads is the introduction of fibers and threads into its composition. Introduction to the asphalt-concrete mixture of small (discrete) elements allows to achieve their uniform distribution (dispersion) in the mixture, and to obtain a "composite" material with higher physical and mechanical properties in the finished structural element


2022 ◽  
Vol 2153 (1) ◽  
pp. 012006
Author(s):  
Y W Yung-Vargas ◽  
A Rodríguez-Lizcano ◽  
C A Peña-Soto

Abstract The dense hot MDC-19 type asphalt mixes are considered, by the “Instituto Nacional de Vías” in Colombia, as continuous grading asphalt mixes (asphalt concrete). These constitute most of the surface course, in the structures of in-service pavements, being the object of study and research in different projects to ensure their durability. In the present investigation, unlike other investigations, the mechanical behavior under Marshall monotonic load was studied in the laboratory between MDC-19 dense type asphalt mixtures, comparing plant-produced and laboratory-produced asphalt mixtures. To carry out this process, samples of uncompacted asphalt mixtures were taken, produced in four fixed plants, with which Marshall-type briquettes were compacted. Likewise, samples of mineral aggregates and asphalt cement were obtained from the same plants, which constitute the mixtures raw material produced there. With these materials, briquettes with the same characteristics were mixed and compacted. Subsequently, the resistance under Marshall monotonic load was determined on the briquettes manufactured in plant and laboratory. The optimal asphalt cement content was compared between plant and laboratory- produced mixtures. An increase in Marshall Stability was found in the briquettes made with plant-produced mixtures, while these required a greater amount of asphalt cement for their production.


2018 ◽  
Vol 33 ◽  
pp. 03062
Author(s):  
Leonid Kolchedantsev ◽  
Aleksey Adamtsevich ◽  
Olga Stupakova ◽  
Alexander Drozdov

The organizational and technological solutions for high-rise buildings construction efficiency increase are considered, primarily – decrease of typical floor construction time and improvement of bearing structures concrete quality. The essence of offered technology is: a concrete mixing station and a polygon mainly for load-bearing wall panels with starter bars casting are located on the building site; for reinforced concrete components manufacturing and butt joints grouting the warmed-up concrete mixtures are used. The results of researches and elaborations carried out by the SPSUACE in area of a preliminary warming-up of concrete mixtures are presented. The possibility and feasibility of their usage in high-rise buildings and of excess height buildings construction including cast-in-place and precast execution are shown. The essence of heat-vibro treating of concrete mixture is revealed as a kind of prior electroresistive curing, and the achieved results are: accelerated concrete strength gain, power inputs decrease, concrete quality improvement. It is shown that the location of a concrete mixing station on the building site enables to broaden possibilities of the “thermos” method use and to avoid concrete mixtures warming up in medium-mass structures erection (columns, girders) during the high-rise buildings construction. It is experimentally proved that the splice between precast elements encased with warmed-up concrete mixture is equal with conjugated elements in strength.


Sign in / Sign up

Export Citation Format

Share Document