scholarly journals ASFALTO MIŠINIŲ AC 11 VS IR SMA 11 S SU SKIRTINGOMIS MINERALINĖMIS MEDŽIAGOMIS EKONOMINIO EFEKTO ANALIZĖ IR VERTINIMAS / ANALYSIS AND EVALUATION OF THE ECONOMIC EFFECT OF ASPHALT MIXTURES AC 11 VS AND SMA 11 S WITH DIFFERENT GRADED AGGREGATES

2019 ◽  
Vol 11 (0) ◽  
pp. 1-6
Author(s):  
Lina Šneideraitienė ◽  
Daiva Žilionienė

The European building sector is facing a pressing issue of natural resources. Importing road building materials for the asphalt surfacing increases the cost of the asphalt mixture. The asphalt surfacing mixtures shall consist of a mixture of graded aggregates accounting for 80−90% of the total volume of the asphalt mixture, or 90−96% of the total weight of the asphalt mixture and binder: road bitumen or polymer modified bitumen. In the Republic of Lithuania, asphalt mixes are designed in accordance to the Design Regulations for Road Pavement Standardized Pavement Structures KP SDK 19 and accordance to the normative documents and their requirements for graded aggregates and binders. Road builders import graded aggregates to asphalt mixes from other countries, and this increases the cost of asphalt mixes. According to the scientific researches in the Lithuanian quarry Petrašiūnai II, using unique production technology is produced class I dolomite crushed stone, which mechanical, physical properties and designed asphalt mixtures can replace imported graded aggregates. The economic question remains as to the economic effect of the most commonly used asphalt mixtures in Lithuania AC 11 VS (asphalt mixture of asphalt pavement wearing course) and SMA 11 S (crushed and mastic asphalt) made from indigenous minerals compared to imported minerals. The aim of the paper is to perform the calculation and evaluation of the economic effect of asphalt mixtures AC 11 VS, SMA 11 S with different minerals and micro-aggregate. The paper identifies and analyses the properties of asphalt test mixtures, and identifies the locations of mineral suppliers in Lithuania. According to the economic impact assessment scheme, the economic effect of asphalt mixtures AC 11 VS, SMA 11 S with different minerals and micro-aggregate was calculated. According to the calculations made, the economic effect of producing asphalt mixtures AC 11 VS, SMA 11 S with class I dolomite chips is 13−14%.

2015 ◽  
Vol 73 (4) ◽  
Author(s):  
Ekarizan Shaffie ◽  
Juraidah Ahmad ◽  
Ahmad Kamil Arshad ◽  
Dzraini Kamarun

This paper presents the potential benefits of nanopolyacrylate (NPA) for the asphalt mixtures used on pavement. This research evaluates the resilient modulus performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified bitumen mix (UMB) and nanopolyacrylate modified bitumen mix (NPMB). Nanopolyacrylate polymer modified bitumen was prepared from addition of 6 percent of NPA polymer into asphalt bitumen. Resilient modulus results from Resilient Modulus test were determined to evaluate the performance of these mixtures. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicated that these mixtures were good with respect to durability and flexibility. The Resilient modulus result of NPMB demonstrates better resistance to rutting than those prepared using UMB mix. It was estimated that the average resilient modulus values for both UMB and NPMB mixtures are decreased by 80 percent when the test temperature increased from 25ºC to 40ºC.   In conclusion, the addition of NPA to the binder has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture.


2021 ◽  
Author(s):  
Ciprian Rares Tarta ◽  
Nicolae Ciont ◽  
Mihai Iliescu ◽  
Gavril Hoda

Asphalt mixtures are composite building materials consisting of a mineral skeleton mixed with a bituminous binder, following a recipe which may also include fibres and/or polymers. The natural aggregates sustain the mixture structure, but adequate bitumen behaviour under various temperature and mechanically-induced stresses is also essential for the structural durability. Much research effort was directed towards improving the asphalt mixtures’ resistance to permanent deformation, implying an increase in mixture stiffness. At the same time, the mixture must exhibit enough low temperature cracking resistance. Six reference asphalt mixture samples were prepared and tested: mixtures M1 and M2 for base and binder courses respectively, as well as four mixtures for wearing courses (two asphalt concrete - AC1 and AC2, a stabilised mixture SMA containing fibres, and a porous mixture - PM). A 50/70 penetration grade bitumen was used to prepare all mixtures. In some cases, the obtained results did not meet the standard requirements. Bitumen or mixture modification is commonly performed by adding thermoplastic or elastomeric polymers, to improve the asphalt mixture behaviour. In this study, the effects of four thermoplastic polymers on the stiffness modulus, dynamic creep and fatigue resistance were studied. All tested polymers were introduced as grains during mixture preparation. Polymer addition led to a 31 % to 104 % increase in mixture stiffness modulus. A 220 % average increase in fatigue resistance was observed for mixtures M1 and M2. For the wearing course mixtures, creep resistance is expressed through a 99 % reduction in deformation speed and a 50 % to 80 % reduction in rut depth. The obtained results met the standard requirements. Using grain polymers is currently an effective alternative to polymer-modified bitumen, because of several technological and economical advantages. Polymer quality is essential to obtain adequate mixture characteristics.


2012 ◽  
Vol 509 ◽  
pp. 209-214
Author(s):  
Shao Peng Wu ◽  
Pan Pan ◽  
Ming Yu Chen

With the widespread application of asphalt mixture, current demand from transportation managers for construction and maintenance of their pavement network consumes large numbers of aggregates. If agencies excessively favor to some certain kinds of excellent aggregates, the cost of construction could be considerably expensive. The major objective of this study is to determine the feasibility of utilizing dacite in asphalt mixtures. By means of Marshall, freeze-thaw, rutting and three-point bending tests, the performances of dacite and basalt asphalt mixture are compared. The results of the testing illustrate that dacite asphalt mixture is more susceptible to gradation and asphalt content than basalt asphalt mixture. Meanwhile it is showed that the performances of dacite asphalt mixture can be improved greatly with the involvement of additives including active mineral powder and cement. Furthermore, it is validated that dacite can be used as alternative aggregate in asphalt mixture.


2019 ◽  
Vol 3 (1) ◽  
pp. 11-16
Author(s):  
Che Norazman Che Wan ◽  

This paper is a review of the chemical and physical properties of coconut fiber in asphalt mixtures. Coconut fibers (CF) are natural fibers and also an agricultural waste, which is abundant after the extraction of juice and coconut fruit. Nowadays, CF has been studied for its potential use in the construction field to increase the strength of materials with its high tensile strength. Additionally, CF can also be one the materials in highway construction as it can improve the skid resistance of asphalt pavements. It was shown that CF treated with NaOH lowered the penetration value and increased the softening point of modified bitumen. Flow of bitumen also can be avoided at high mixing and compaction temperatures by adding 0.7% of CF.


2019 ◽  
Vol 8 (3) ◽  
pp. 6146-6149

It is desirable to incorporate Reclaimed Asphalt Pavement into the asphalt mixtures, which provides several benefits i.e. economic, environmental and performance. It is necessary to study, the economic analysis of the RAP since that incur several contingencies to the asphalt mixtures. In this study, a simple approach is used to evaluate the production cost of the asphalt and RAP incorporated asphalt mixtures. Apart from that Waste Vegetable Oil (WVO) is used as a rejuvenator to enhance the properties of the mixture. In this study, asphalt mixture production cost is evaluated and cost of each material is taken from the Public Works Department Standard Scheduled of Rates (PWD – SSR) and the market survey techniques are followed. From the cost-benefit ratio, it is observed that the reduction in the Optimum Binder Content (OBC) provides great economic savings to the production cost. The incorporation of the RAP reduced the asphalt content and reduced the production cost of the asphalt mixtures. The addition of the WVO further reduced the OBC but increased the production cost compared to the non-rejuvenated mixture. The increase in the production cost is due to the extra cost invested on the WVO and other contingencies.


Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Nuha Mashaan ◽  
Amin Chegenizadeh ◽  
Hamid Nikraz

Commercial polymers have been used in pavement modification for decades; however, a major drawback of these polymers is their high cost. Waste plastic polymers could be used as a sustainable and cost-effective additive for improving asphalt properties, attaining combined environmental–economic benefits. Since 2019, in Australia, trial segments of roads have been built using waste materials, including plastic, requiring that laboratory evaluations first be carried out. This study aims to examine and evaluate the effect of using a domestic waste plastic, polyethylene terephthalate (PET), in modifying C320 bitumen. The assessment of several contents of PET-modified bitumen is carried out in two phases: modified bitumen binders and modified asphalt mixtures. Dynamic shear rheometer (DSR) and rolling thin film oven tests (RTFOT) were utilised to investigate the engineering properties and visco-elastic behaviour of plastic-modified bitumen binders. For evaluating the engineering properties of the plastic-modified asphalt mixtures, the Marshall stability, Marshall flow, Marshall quotient and rutting tests were conducted. The results demonstrated that 6–8% is the ideal percentage of waste plastic proposed to amend and enhance the stiffness and elasticity behaviour of asphalt binders. Furthermore, the 8% waste PET-modified asphalt mixture showed the most improvement in stability and rutting resistance, as indicated by increased Marshal stability, increased Marshall quotient and decreased rut depth. Future fatigue and modulus stiffness tests on waste plastic-modified asphalt mixtures are suggested to further investigate the mechanical properties.


2015 ◽  
Vol 752-753 ◽  
pp. 194-198 ◽  
Author(s):  
E. Shaffie ◽  
J. Ahmad ◽  
D. Kamarun

Rutting is a common pavement failure in road pavement. Rutting occurs mainly due to several factors including increasing of vehicles numbers, environmental conditions and also due to construction and design errors. As a consequence the service life of asphalt pavement is affected and will be decreased. Various researches reported that using different types of polymers in bitumen modification could be a solution to delay deterioration of asphalt pavement. The main purpose of the study was to investigate the effect of the NPA polymer modifier on the rutting behaviour of the asphalt mixtures through Superpave designed mixtures. . Two different types of dense graded Superpave HMA mix were developed consists of Control mix and nanopolyacrylate (NPA) mix. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore there is a significant difference between Control mix and NPA mix in terms of rutting in which rut depth after 8000 passes for Control mix was 5.94 mm while for NPA mix was 2.98 mm. The results of this investigation indicated that the Rutting test result of NPA demonstrates 3% better resistance to rutting than those prepared using Control mix. This is due to the addition of NPA to the bitumen has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture. Therefore, it can be concluded that NPA polymer is feasible to be used as asphalt modifier and has potential for improvement in the field of pavement material and construction in future.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3802
Author(s):  
Stefano Marini ◽  
Michele Lanotte

Waste rubber from end-of-life tires has been proved to be an excellent source of polymeric material for paving applications. Over the years, however, the rubberized asphalt technology has never been used in ‘lean’ (low bitumen content) asphalt mixtures typically used in arid regions. This study offers an insight on the potential benefits and drawbacks resulting from this technology if applied in such ‘lean’ mixes. Results show that the ‘lean’ nature of those asphalt mixes eliminates the potential benefits given by the modified bitumen for rutting performance. Instead, the aggregates gradation plays a major role in the response of the materials, with gap-graded mixtures often outperforming those with a dense-graded gradation. On the contrary, fatigue cracking resistance is affected by the bitumen properties, and rubberized asphalt perform better than others. The performance-based analysis suggests that the current specifications tend to overachieve the goal of reducing permanent deformation while cracking becomes a major concern which can be solved by using rubberized asphalt. In the field, gap-graded asphalt with rubberized bitumen showed the best response in terms of skid resistance and noise reduction.


Respuestas ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 86-97
Author(s):  
Carlos Hernando Higuera Sandoval ◽  
Brandon Nicolás Olarte Riaño ◽  
Rubén David Soler Sánchez

Currently in Colombia, a lot of used tires are generated which have not been provided with proper handling,for this reason, environmental problems are significant, therefore, there is a need to look for alternatives that encourage the reuse of waste from various recyclable materials and thus incorporate them into the production cycle, obtaining as a major benefit a reduction in the environmental impact caused by this type of waste. According to the above, the investigation analyzed the effect of the recycled rubber grain added by dry process, in the rutting of an asphaltic mixture type MD-12, through the plastic deformation resistance test standardized by the Instituto Nacional de Vías INVIAS 2013. The analysis was carried out using the Marshall methodology with the design of an asphalt mixture conventional MD-12 and three MD-12 asphalt mixtures with variations in the addition of GCR, the preliminary designs and verification of each of the asphalt mixes as established in the general construction specifications of the Instituto de Desarrollo Urbano IDU 2011, obtaining the respective working formula of each asphalt mixture. Obtaining favorable behaviors in asphalt mixtures with addition of 0.5% of GCR in which there are decreases of up to 5.3% in the rutting, with respect to the asphaltic mixture of reference, also it highlights the improvements that the asphalt mixture presented in terms of resistance to plastic deformation or rutting, before the addition of rubber grain recycled by dry process, for this reason it is recommended to use it in asphalt mixtures type MD-12 as part of the fine aggregate and thus obtain a greater efficiency from the mechanical point of view, as well as the improvements in the useful life of the pavement and the mitigation of the environmental impacts generated by the mishandling of tires out of use in the country.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2541
Author(s):  
Tuo Huang ◽  
Mi Li ◽  
Mou-ying Huang ◽  
Hao-hao Jiang ◽  
Yao Tang ◽  
...  

Strength is an important parameter for the design of asphalt pavement materials and structures. To study the influence of various factors on the three-dimensional strength of asphalt mixtures, three aggregate gradations (dense-graded bituminous mixture AC-13, stone mastic asphalt SMA-13 and bituminous stabilization aggregate paving mixture OGFC-13) and two binders (SBS modified bitumen and 70# base bitumen) were used to prepare the asphalt mixture specimens. Among them, SBS+SMA-13 asphalt mixture has the best performance. On this basis, the uniaxial compressive test, uniaxial tensile test and confining triaxial test were conducted on the SBS+SMA-13 asphalt mixture under six oil-stone ratios conditions (5.5%, 5.7%, 5.9%, 6.1%, 6.3%, and 6.5%), six temperatures conditions (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C), and five loading rates conditions (1 mm/min, 2 mm/min, 3 mm/min, 4 mm/min, and 5 mm/min). In addition, a unified three-dimensional strength calculation model considering the influence of temperature, loading rate, and oil-stone ratio was proposed, and the change law of the three-dimensional strength with these above factors was revealed. Furthermore, two sets of three-factor three-level orthogonal tests were carried out on the SMA-13 asphalt mixture. The sensitivity analysis and strength regulation research between three-dimensional strength and each factor were carried out. The results show that the type of asphalt has the greatest influence on the strength of the mixture, the temperature has the second most influence, the loading rate has less influence, and the oil-stone ratio has the least influence. The strength regulations proposed to improve the strength of the asphalt mixture include the use of modified asphalt, high-temperature stability high-quality asphalt, and the lower oil-stone ratio than the Marshall optimal oil-stone ratio. The strength control measures proposed from the perspective of the three-dimensional stress state, the joint failure of each stress components and real stress states are taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document