scholarly journals Non‑invasive proteome‑wide quantification of skin barrier‑related proteins using label‑free LC‑MS/MS analysis

Author(s):  
Mengting Liu ◽  
Jing Zhang ◽  
Yaochi Wang ◽  
Cong Xin ◽  
Jie Ma ◽  
...  
2021 ◽  
Vol 137 ◽  
pp. 106861
Author(s):  
Deepa Joshi ◽  
Ankit Butola ◽  
Sheetal Raosaheb Kanade ◽  
Dilip K. Prasad ◽  
S.V. Amitha Mithra ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3124
Author(s):  
Charles Farber ◽  
A. S. M. Faridul Islam ◽  
Endang M. Septiningsih ◽  
Michael J. Thomson ◽  
Dmitry Kurouski

Digital farming is a modern agricultural concept that aims to maximize the crop yield while simultaneously minimizing the environmental impact of farming. Successful implementation of digital farming requires development of sensors to detect and identify diseases and abiotic stresses in plants, as well as to probe the nutrient content of seeds and identify plant varieties. Experimental evidence of the suitability of Raman spectroscopy (RS) for confirmatory diagnostics of plant diseases was previously provided by our team and other research groups. In this study, we investigate the potential use of RS as a label-free, non-invasive and non-destructive analytical technique for the fast and accurate identification of nutrient components in the grains from 15 different rice genotypes. We demonstrate that spectroscopic analysis of intact rice seeds provides the accurate rice variety identification in ~86% of samples. These results suggest that RS can be used for fully automated, fast and accurate identification of seeds nutrient components.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 755
Author(s):  
Rima Budvytyte ◽  
Akvile Milasiute ◽  
Dalius Vitkus ◽  
Kestutis Strupas ◽  
Aiste Gulla ◽  
...  

Extracellular heat shock proteins (HSPs) mediate immunological functions and are involved in pathologies such as infection, stress, and cancer. Here, we demonstrated the dependence of an amount of HSP70 and HSP90 in serum vs. severity of acute pancreatitis (AP) on a cohort of 49 patients. Tethered bilayer lipid membranes (tBLMs) have been developed to investigate HSPs’ interactions with tBLMs that can be probed by electrochemical impedance spectroscopy (EIS). The results revealed that HSP70 and HSP90 interact via different mechanisms. HSP70 shows the damage of the membrane, while HSP90 increases the insulation properties of tBLM. These findings provide evidence that EIS offers a novel approach for the study of the changes in membrane integrity induced by HSPs proteins. Herein, we present an alternative electrochemical technique, without any immunoprobes, that allows for the monitoring of HSPs on nanoscaled tBLM arrangement in biologics samples such us human urine. This study demonstrates the great potential of tBLM to be used as a membrane based biosensor for novel, simple, and non-invasive label-free analytical system for the prediction of AP severity.


2012 ◽  
Author(s):  
Tobias Meyer ◽  
Nadine Vogler ◽  
Benjamin Dietzek ◽  
Denis Akimov ◽  
Johanna Inhestern ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
David Dannhauser ◽  
Domenico Rossi ◽  
Anna T Palatucci ◽  
Valentina Rubino ◽  
Flavia Carriero ◽  
...  

Natural Killer (NK) are indicated as favorite candidates for innovative therapeutic treatment and are divided in two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim. Therefore, the ability...


2009 ◽  
Vol 1 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Claire Dalmay ◽  
Arnaud Pothier ◽  
Mathilde Cheray ◽  
Fabrice Lalloue ◽  
Marie-Odile Jauberteau ◽  
...  

This paper presents an original biosensor chip allowing determination of intrinsic relative permittivity of biological cells at microwave frequencies. This sensor permits non-invasive cell identification and discrimination using an RF signal to probe intracellular medium of biological samples. Indeed, these sensors use an RF planar resonator that allows detection capabilities on less than 10 cells, thanks to the microscopic size of its sensitive area. Especially, measurements between 15 and 35 GHz show the ability label-free biosensors to differentiate two human cell types using their own electromagnetic characteristics. The real part of permittivity of cells changes from 20 to 48 for the nervous system cell types studied. The proposed biodetection method is detailed and we show how the accuracy and the repeatability of measurements have been improved to reach reproducible measurements.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 866 ◽  
Author(s):  
Shinta Mariana ◽  
Gregor Scholz ◽  
Feng Yu ◽  
Agus Budi Dharmawan ◽  
Iqbal Syamsu ◽  
...  

Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.


2020 ◽  
Author(s):  
Marco Grisi ◽  
Gaurasundar M. Conley ◽  
Kyle J. Rodriguez ◽  
Erika Riva ◽  
Lukas Egli ◽  
...  

AbstractPerforming chemical analysis at the nanoliter (nL) scale is of paramount importance for medicine, drug development, toxicology, and research. Despite the numerous methodologies available, a tool for obtaining chemical information non-invasively is still missing at this scale. Observer effects, sample destruction and complex preparatory procedures remain a necessary compromise1. Among non-invasive spectroscopic techniques, one able to provide holistic and highly resolved chemical information in-vivo is nuclear magnetic resonance (NMR)2,3. For its renowned informative power and ability to foster discoveries and life-saving applications4,5, efficient NMR at microscopic scales is highly sought after6–10, but so far technical limitations could not match the stringent necessities of microbiology, such as biocompatible handling, ease of use, and high throughput. Here we introduce a novel microsystem, which combines CMOS technology with 3D microfabrication, enabling nL NMR as a platform tool for non-invasive spectroscopy of organoids, 3D cell cultures, and early stage embryos. In this study we show its application to microlivers models simulating non-alcoholic fatty liver disease (NAFLD), demonstrating detection of lipid metabolism dynamics in a time frame of 14 days based on 117 measurements of single 3D human liver microtissues.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Y Tan ◽  
S B Mahbub ◽  
C A Campugan ◽  
J Campbell ◽  
A Habibalahi ◽  
...  

Abstract Study question Can we separate between control and reversine-treated cells within the inner cell mass (ICM) of the mouse preimplantation embryo by using label-free and non-invasive hyperspectral microscopy? Summary answer Hyperspectral microscopy is able to discern between control and reversine-treated cells using cellular autofluorescence in the complete absence of fluorescence tags. What is known already Embryo mosaicism (containing cells that are euploid (46 chromosomes) and aneuploid (deviation from the expected number of chromosomes)) affects up to 17.3% of human blastocyst embryos. Current diagnosis of aneuploidy in the IVF clinic involves a biopsy of trophectoderm (TE) cells or spent media followed by sequencing. In some blastocyst embryos these approaches will fail to diagnose of the proportion of aneuploid cells within the fetal lineage (ICM). Study design, size, duration The impact of aneuploidy on cellular metabolism was assessed by using cellular autofluoresence and hyperspectral microscopy (broad spectral profile). Two models were employed: (i) Primary human fibroblast cells with known karyotypes (4-6 independent replicates, euploid n = 467; aneuploid n = 969) and reversine induced aneuploidy in mouse embryos (5-8 independent replicates, 30-44 cells per group). Both models were subjected to hyperspectral imaging to quantify native cell fluorescence. Participants/materials, setting, methods The human model is comprised of euploid (male and female) and aneuploid (triploid and trisomies: 13, 18, 21, XXX, and XXY) primary human fibroblast cells. For the mouse model, we treated embryos with reversine, a reversible spindle assembly checkpoint inhibitor, during the 4- to 8-cell division. Individual blastomeres were dissociated from control and reversine treated 8-cell embryos. Blastomeres were either imaged directly or used to generate chimeric blastocysts with differing ratios of control:reversine-treated cells. Main results and the role of chance Following unsupervised linear unmixing, the relative abundance of metabolic cofactors was quantified: reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavins with the subsequent calculation of the optical redox ratio (ORR: Flavins/[NAD(P)H + Flavins]). Primary human fibroblast cells displayed an increase in the relative abundance of NAD(P)H with a decrease in flavins, leading to a significant reduction in the ORR for aneuploid cells (P < 0.05). The mouse embryos displayed an identical trend as the human model between control and reversine-treated embryos. Mathematical algorithms were applied and able to distinguish between (i) euploid and aneuploid primary human fibroblast cells, (ii) control and reversine-treated mouse blastomeres and (iii) chimeric blastocysts with differing ratios of control and reversine-treated cells. The accuracy of these separations was supported by receiver operating characteristic curves with areas under the curve. We also showed that hyperspectral imaging of the preimplantation embryo does not impact on embryo developmental competence, pregnancy outcome and offspring health in a mouse model. We believe the role of chance is low as both human somatic cells and mouse embryos showed a consistent shift in cellular metabolism in response to human fibroblast cells that are aneuploid and reversine treated mouse embryos. Limitations, reasons for caution Further validation of our approach could include sequencing of the ICM of individual blastocysts to determine the proportion of aneuploid cells in ICM and correlate this with the metabolic profile obtained through hyperspectral imaging. Wider implications of the findings With hyperspectral imaging able to discriminate between (i) euploid and aneuploid human fibroblast cells and (ii) control and reversine-treated mouse embryos, this could be an accurate, non-invasive and label-free optical imaging approach to assess mosaicism within the ICM of mouse embryos, potentially leading to a new diagnostic tool for embryos. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document