scholarly journals Icariin suppresses cell cycle transition and cell migration in ovarian cancer cells

Author(s):  
Pengzhen Wang ◽  
Jinli Zhang ◽  
Xifeng Xiong ◽  
Wei Yuan ◽  
Shengnan Qin ◽  
...  
2020 ◽  
Vol 19 (2) ◽  
pp. 206-210
Author(s):  
Feng Chen ◽  
Bei Zhang

Lupeol exhibits multiple pharmacological activities including, anticancerous, anti-inflammatory, and antioxidant. The aim of this study was to explore the anticancerous activity of lupeol on ovarian cancer cells and examine its mechanism of action. To this end, increasing concentrations of lupeol on cell viability, cell cycle, and apoptosis in Caov-3 cells were evaluated. Lupeol inhibited cell viability, induced G1 phase arrest in cell cycle, increased cell apoptosis, and inhibited the ratio of phospho-Akt/protein kinase B and phospho-mammalian target of rapamycin/mammalian target of rapamycin. In conclusion, these data suggest that lupeol may play a therapeutic role in ovarian cancer.


2019 ◽  
Vol 19 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Katarzyna Bednarska-Szczepaniak ◽  
Damian Krzyżanowski ◽  
Magdalena Klink ◽  
Marek Nowak

Background: Adenosine released by cancer cells in high amounts in the tumour microenvironment is one of the main immunosuppressive agents responsible for the escape of cancer cells from immunological control. Blocking adenosine receptors with adenosine analogues and restoring immune cell activity is one of the methods considered to increase the effectiveness of anticancer therapy. However, their direct effects on cancer cell biology remain unclear. Here, we determined the effect of adenosine analogues on the response of cisplatinsensitive and cisplatin-resistant ovarian cancer cells to cisplatin treatment. Methods: The effects of PSB 36, DPCPX, SCH58261, ZM 241385, PSB603 and PSB 36 on cisplatin cytotoxicity were determined against A2780 and A2780cis cell lines. Quantification of the synergism/ antagonism of the compounds cytotoxicity was performed and their effects on the cell cycle, apoptosis/necrosis events and cisplatin incorporation in cancer cells were determined. Results: PSB 36, an A1 receptor antagonist, sensitized cisplatin-resistant ovarian cancer cells to cisplatin from low to high micromolar concentrations. In contrast to PSB 36, the A2AR antagonist ZM 241385 had the opposite effect and reduced the influence of cisplatin on cancer cells, increasing their resistance to cisplatin cytotoxicity, decreasing cisplatin uptake, inhibiting cisplatin-induced cell cycle arrest, and partly restoring mitochondrial and plasma membrane potentials that were disturbed by cisplatin. Conclusion: Adenosine analogues can modulate considerable sensitivity to cisplatin of ovarian cancer cells resistant to cisplatin. The possible direct beneficial or adverse effects of adenosine analogues on cancer cell biology should be considered in the context of supportive chemotherapy for ovarian cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


2010 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Christopher S Bryant ◽  
Sanjeev Kumar ◽  
Sreedhar Chamala ◽  
Jay Shah ◽  
Jagannath Pal ◽  
...  

2020 ◽  
Vol 19 (7) ◽  
pp. 1417-1422
Author(s):  
Rao Zhiwei ◽  
Xia Songbai ◽  
Han Qi

Purpose: To assess the cytotoxic effect of 5, 7-dihalo-8-quinolinol complex (DHQ) on ovarian cancer cells, and the mechanism of action involved.Methods: DHQ-mediated changes in cell viability were determined using MTT assay, while apoptosis was analyzed with flow cytometry. The effect of DHQ on cell migration was determined using inverted microscopy, while its effect on invasiveness was assessed with Giemsa dyeing. FACS Caliburinstrumentation was employed for analyzing the effect of DHQ on the cell cycle. The protein expressions of Wip1 and P53 were assayed by western blotting.Results: DHQ induced cytotoxicity against A2780 and OVCAR 3 cells in the concentration range of 0.25 - 12 μM (p < 0.05). In A2780 and OVCAR 3 cells, treatment with 12 μMDHQ resulted in 69.34 and 65.46 % apoptosis, respectively. The migratory potential and invasiveness of A2780 and OVCAR3 cells were significantly decreased by 12 μMDHQ, relative to untreated cells (p < 0.05). Moreover, treatment with 12 μMDHQ arrested cell cycle at G1/G0 phase in A2780 and OVCAR3 cells, but downregulated the protein expressions of Wip1 expression in A2780 and OVCAR3 cells.Conclusion: DHQ exerts cytotoxic effect on ovarian cancer cell growth via arrest of cell cycle and activation of apoptosis. Moreover, DHQ inhibits the migratory and invasive abilities of the cells. Thus, DHQ is a potential drug candidate for the management of ovarian cancer. Keywords: 5,7-Dihalo-8-quinolinol complex, Ovarian cancer, Cytotoxicity, Apoptosis, Invasiveness, Migration, Cell cycle


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Zeinab Dehghani-Ghobadi ◽  
Shahrzad Sheikh Hasani ◽  
Ehsan Arefian ◽  
Ghamartaj Hossein

In this paper, we investigate whether Wnt5A is associated with the TGF-β1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFβ1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFβ1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFβ1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.


2021 ◽  
Vol 17 (1) ◽  
pp. 127-134
Author(s):  
Min Wei ◽  
Hongjuan Jin ◽  
ShuLi Yang ◽  
Zhuo Li ◽  
Xinlei Wang ◽  
...  

IntroductionOvarian cancer is the most frequent cause of gynecological cancer related mortality in woman. This study was designed to investigate the role and therapeutic potential of miRNA-101 in ovarian cancer.Material and methodsExpression analysis was carried out by real-time quantitative polymerase chain reaction. Transfections were performed with the help of Lipofectamine 2000 reagent. AO/EB and annexin V/PI staining was used to detect apoptosis and flow cytometry was used for cell cycle analysis. Western blotting was employed for cell cycle analysis.ResultsIt was found that miRNA-101 was significantly down-regulated in ovarian cancer cells. The over-expression of miRNA-101 causes a significant decrease in the viability of ovarian cancer cells via the initiation of apoptosis and sub-G1 arrest of OVACAR-3 cells. It was indicated that PTEN was the potential target of miRNA-101 in OVACAR-3 cells. There was 4.5-fold up-regulation of PTEN expression in ovarian cancer cell lines and the over-expression of miRNA-101 in OVACAR-3 cells resulted in the down-regulation of PTEN expression. The inhibition of PTEN in the OVACAR-3 cells arrested the proliferation of these cells. The over-expression of miRNA-101 causes significant down-regulation in PI3K and AKT expression of OVACAR-3 cells.ConclusionsIt can be concluded that miRNA-101 acts as a tumor suppressor which may be beneficial in the treatment of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document