scholarly journals Simultaneous quantification of the major flavonoids from wild spinach by UHPLC-HRMS and their neuroprotective effects in a model of H2O2-induced oxidative stress on SH-SY5Y cells

Pharmacia ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 657-664
Author(s):  
Zlatina Kokanova-Nedialkova ◽  
Denitsa Aluani ◽  
Virginia Tzankova ◽  
Paraskev Nedialkov

A modified UHPLC-HRMS method for simultaneous quantification of eight flavonoids from the aerial parts of the wild spinach (Chenopodium bonus-henricus L.) was re-validated for specificity, the limit of detection and quantitation limit, linearity, accuracy, and precision. The glycosides of spinacetin (Chbhnf-04, Chbhnf-06, and Chbhnf-08) and patuletin (Chbhnf-01) were the predominant compounds. The total amount of assayed flavonoids from the aerial parts of a title plant was estimated to be 1.82% and 1.4% in two different populations from Vitosha Mountain (Bulgaria). The neuroprotective properties of compounds Chbhnf-02, Chbhnf-04, Chbhnf-06, Chbhnf-07, Chbhnf-08 were further assessed using a model of H2O2-induced oxidative stress on human neuroblastoma SH-SY5Y cells. All tested flavonoids demonstrated statistically significant neuroprotective activity close to that of silibinin. Patuletin (Chbhnf-07) and spinacetin (Chbhnf-08) triglycosides showed the most protective effects at the lowest concentration of 50 µM.

2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 539
Author(s):  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Giovanni Enrico Lombardo ◽  
Caterina Russo ◽  
Laura Musumeci ◽  
...  

Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.


2021 ◽  
Vol 22 (13) ◽  
pp. 6946
Author(s):  
Weishun Tian ◽  
Suyoung Heo ◽  
Dae-Woon Kim ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
...  

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


2019 ◽  
Vol 310 ◽  
pp. 108688 ◽  
Author(s):  
Chen Zheng ◽  
Mei Zhou ◽  
Jie Sun ◽  
Hui Xiong ◽  
Peng Peng ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Aiqin Zhu ◽  
Zhou Wu ◽  
Jie Meng ◽  
Patrick L. McGeer ◽  
Yi Zhu ◽  
...  

We previously found thatRatanasampil(RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2′-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.


2020 ◽  
Vol 70 (4) ◽  
pp. 618-630 ◽  
Author(s):  
Hong-Kan Zhang ◽  
Yuan Ye ◽  
Kai-Jun Li ◽  
Zhen-ni Zhao ◽  
Jian-Feng He

AbstractOur previous study demonstrated that gypenosides (Gp) exert protective effects on retinal nerve fibers and axons in a mouse model of experimental autoimmune optic neuritis. However, the therapeutic mechanisms remain unclear. Thus, in this study, a model of oxidative damage in retinal ganglion cells (RGCs) was established to investigate the protective effect of Gp, and its possible influence on oxidative stress in RGCs. Treatment of cells with H2O2 induced RGC injury owing to the generation of intracellular reactive oxygen species (ROS). In addition, the activities of antioxidative enzymes decreased and the expression of inflammatory factors increased, resulting in an increase in cellular apoptosis. Gp helped RGCs to become resistant to oxidation damage by directly reducing the amount of ROS in cells and exerting protective effects against H2O2-induced apoptosis. Treatment with Gp also reduced the generation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased nuclear respiratory factor 2 (Nrf-2) levels so as to increase the levels of heme oxygenase-1 (HO-1) and glutathione peroxidase 1/2 (Gpx1/2), which can enhance antioxidation in RGCs. In conclusion, our data indicate that neuroprotection by Gp involves its antioxidation and anti-inflammation effects. Gp prevents apoptosis through a mitochondrial apoptotic pathway. This finding might provide novel insights into understanding the mechanism of the neuroprotective effects of gypenosides in the treatment of optic neuritis.


2017 ◽  
Vol 6 ◽  
Author(s):  
Manjeet Singh ◽  
Charles Ramassamy

AbstractCanine cognitive dysfunction (CCD) is an age-dependent neurodegenerative condition characterised by changes in decline in learning and memory patterns. The neurodegenerative features of CCD in ageing dogs and cats are similar to human ageing and Alzheimer's disease (AD). Discovering neuroprotective disease-modifying therapies against CCD and AD is a major challenge. Strong evidence supports the role of amyloid β peptide deposition and oxidative stress in the pathophysiology of CCD and AD. In both the human and canine brain, oxidative damage progressively increases with age. Dietary antioxidants from natural sources hold a great promise in halting the progression of CCD and AD.Withania somnifera(WS), an Ayurvedic tonic medicine, also known as ‘Indian ginseng’ orashwagandhahas a long history of use in memory-enhancing therapy but there is a dearth of studies on its neuroprotective effects. The objective of this study was to investigate whetherWSextract can protect against Aβ peptide- and acrolein-induced toxicity. We demonstrated that treatment withWSextract significantly protected the human neuroblastoma cell line SK-N-SH against Aβ peptide and acrolein in various cell survival assays. Furthermore, treatment withWSextract significantly reduced the generation of reactive oxygen species in SK-N-SH cells. Finally, our results showed thatWSextract is also a potent inhibitor of acetylcholinesterase activity. Thus, our initial findings indicate thatWSextract may act as an antioxidant and cholinergic modulator and may have beneficial effects in CCD and AD therapy.


2016 ◽  
Vol 65 (4) ◽  
pp. 752-758 ◽  
Author(s):  
Antonio González-Sarrías ◽  
María Ángeles Núñez-Sánchez ◽  
Francisco A. Tomás-Barberán ◽  
Juan Carlos Espín

2014 ◽  
Vol 31 (4) ◽  
pp. 233-243
Author(s):  
Ivana Stojanović ◽  
Srđan Ljubisavljević ◽  
Ivana Stevanović ◽  
Slavica Stojnev ◽  
Radmila Pavlović ◽  
...  

Summary The aim of this study was to investigate the exogenous agmatine influence on nitrosative and oxidative stress parameters in acute phase of multiple sclerosis (MS) experimental model, experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous injection of myelin basic protein (50 μg per animal). Sprague-Dawley rats were divided into five groups: I group - (CG), treated by PBS (i.p.), II group - (EAE), III group - (CFA), treated with Complete Freund’s adjuvant (0.2 ml subcutaneously), IV group - (EAE+AGM), treated by agmatine (75 mg/kg bw i.p.) upon EAE induction and V group - (AGM), received only agmatine in the same dose. The animals were treated every day during experiment - from day 0 to 15, and clinically scored every day. They were sacrificed on day 16 from MBP application. NO2+NO3, S-nitrosothiols (RSNO), malondyaldehide (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were determined in rat whole encephalitic mass (WEM) and cerebellum homogenates. Agmatine exerted strong protective effects on EAE clinical symptoms (p<0.05). In EAE brain homogenates, NO2+NO3, RSNO and MDA concentrations were increased compared to CG values. Agmatine treatment diminished NO2+NO3, RSNO and MDA levels in EAE animals (p<0.05). In EAE rats, GSH level and SOD activity were decreased compared to CG values, but agmatine treatment increased both parameters compared to EAE untreated animals (p<0.05). Immunohistochemical staining supported the clinical and biochemical findings in all groups. The CNS changes in EAE are successfully supressed by agmatine application, which could be the the new aspect of the neuroprotective effects of agmatine.


2021 ◽  
Author(s):  
Rafaella Carvalho Rossato ◽  
Alessandro Eustaquio Campos Granato ◽  
Jessica Cristina Pinto ◽  
Carlos Dailton Guedes de Oliveira Moraes ◽  
Geisa Nogueira Salles ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is a type of dementia that affects millions of people. Although there is no cure, several study strategies seek to elucidate the mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze the neuroprotective effect of taurine on human neuroblastoma, using an in vitro experimental model of oxidative stress induced by hydrocortisone in the SH-SY5Y cell line as a characteristic model of AD. The violet crystal assay was used for cell viability and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). After pretreatment with taurine, the SH-SY5Y cell showed an improvement in cell viability in the face of oxidative stress and improved cell morphology. Thus, the treatment presented a neuroprotective effect.GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document