Hesperidin Reduces Ovary Toxicity Induces by Cyclophosphamide in Female Rats via Anti-inflammatory and Antioxidant Effects

2021 ◽  
Vol 17 (5) ◽  
pp. 328-338
Author(s):  
Li Chen ◽  
Yi Yan ◽  
Zhujuan Li ◽  
Hua Li
2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301
Author(s):  
Renata Köhlerová ◽  
Eva Čermáková ◽  
Milena Hajzlerová

Boldine is a natural alkaloid with anti-inflammatory and antioxidant effects. It reduces glycemia and decreases blood pressure in rats with type 1 diabetes. We have also studied whether boldine has anti-inflammatory and antioxidant effects in rats with type 2 diabetes and whether it can improve healing of their skin wounds, a serious comorbidity of type 2 diabetes. This work also compares lean and obese Zucker diabetic rats, including a comparison of both sexes. After skin excisions, the wounded animals received granules containing boldine ad libitum. The weights of rats, amount of consumed food and wound size were measured regularly. Scar and internal organs were removed and analyzed. Further, the tensile strength of the scar was tested and hydroxyproline content (a marker of collagen) measured. We have not confirmed previously published positive effects of boldine, but we observed important differences between gender and between genotypes. Male rats had higher body weight, liver, kidney and spleen than female rats. Furthermore, their wounds took longer to heal with bigger scar areas.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 371
Author(s):  
Llion Arwyn Roberts ◽  
Katsuhiko Suzuki

Trends relating to specific diets and lifestyle factors like physical (in) activity have formed in recent times [...]


2012 ◽  
Vol 179 (1-3) ◽  
pp. 55-60 ◽  
Author(s):  
Ana Raquel Santos de Medeiros ◽  
Aline Zandonadi Lamas ◽  
Izabela Facco Caliman ◽  
Polyana L. Meireles Dalpiaz ◽  
Luciana Barbosa Firmes ◽  
...  

Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 800-817
Author(s):  
Flavia Cavicchioli ◽  
Izzy M. Cesarotti ◽  
Madison Fangman ◽  
Josh Lua ◽  
Raymond Hautamaki ◽  
...  

Carbon monoxide (CO) has long been known for its toxicity. However, in recent decades, new applications for CO as a therapeutic compound have been proposed, and multiple forms of CO therapy have since been developed and studied. Previous research has found that CO has a role as a gasotransmitter and promotes anti-inflammatory and antioxidant effects, making it an avenue of interest for medicine. Such effects are possible because of the Nrf2/HO1 pathway, which has become a target for therapy development because its activation also leads to CO release. Currently, different forms of treatment involving CO include inhaled CO (iCO), carbon monoxide-releasing molecules (CORMs), and hybrid carbon monoxide-releasing molecules (HYCOs). In this article, we review the progression of CO studies to develop possible therapies, the possible mechanisms involved in the effects of CO, and the current forms of therapy using CO.


2021 ◽  
Author(s):  
Jingle Jiang ◽  
Lina Qi ◽  
Quanwei Wei ◽  
F. Shi

Our previous study showed that dietary stevioside supplementation could alleviate intestinal mucosal damage induced by lipopolysaccharide (LPS) through its anti-inflammatory and antioxidant effects in broiler chickens. However, it remains unknown...


Author(s):  
Abhishek Chatterjee ◽  
Dileep Singh Baghel ◽  
Bimlesh Kumar ◽  
Saurabh Singh ◽  
Narendra Kumar Pandey ◽  
...  

Objective: The aims of the present investigation were to develop the herbal and/or herbomineral formulations of Hinguleswara rasa and to compare their anti-inflammatory and antioxidant activities, in vitro, with that of standard drug samples.Methods: This study was an interventional investigation in three samples: In the first sample, Hinguleswara rasa (HR1) was prepared as per methodology described in Rasatarangini using Shuddha Hingula (10 g), Shuddha Vatsanabha (10 g), and Pippali (10 g). In the second and third sample, respectively, Hinguleswara rasa was prepared by replacing Shuddha Hingula with Kajjali where Kajjali made from Hingulotha parada and Sodhita parada constitutes two varieties of Hinguleswara rasa, i.e. HR2 and HR3. In vitro antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl, and the absorbance was recorded at 517 nm. For evaluating the in vitro anti-inflammatory studies, the inhibition of albumin denaturation technique was performed.Results: The results showed that the formulation of Hinguleswara rasa has shown dose-dependent activity which was observed in 100 μg concentration. HR1, HR2, and HR3 showed 36.11, 17.22, and 16.11% radical scavenging activity.Conclusion: It could be concluded that the changes made in the formulations did not affect the in vitro anti-inflammatory and antioxidant effects of the herbomineral formulations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


2010 ◽  
Vol 120 (6) ◽  
pp. 219-229 ◽  
Author(s):  
Madhav Lavu ◽  
Shashi Bhushan ◽  
David J. Lefer

H2S (hydrogen sulfide), viewed with dread for more than 300 years, is rapidly becoming a ubiquitously present and physiologically relevant signalling molecule. Knowledge of the production and metabolism of H2S has spurred interest in delineating its functions both in physiology and pathophysiology of disease. Although its role in blood pressure regulation and interaction with NO is controversial, H2S, through its anti-apoptotic, anti-inflammatory and antioxidant effects, has demonstrated significant cardioprotection. As a result, a number of sulfide-donor drugs, including garlic-derived polysulfides, are currently being designed and investigated for the treatment of cardiovascular conditions, specifically myocardial ischaemic disease. However, huge gaps remain in our knowledge about this gasotransmitter. Only by additional studies will we understand more about the role of this intriguing molecule in the treatment of cardiovascular disease.


2021 ◽  
Vol 11 (10) ◽  
pp. 4711
Author(s):  
Woo Jin Lee ◽  
Wan Yi Li ◽  
Sang Woo Lee ◽  
Sung Keun Jung

Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties.


Sign in / Sign up

Export Citation Format

Share Document