scholarly journals Impact of Salicylic Acid Application on Growth, Photosynthetic Pigments and Organic Osmolytes Response in Mentha arvensis under Drought Stress

2019 ◽  
Vol 19 (6) ◽  
pp. 372-380 ◽  
Author(s):  
Abeer Hamdy Elhakem
2020 ◽  
Vol 66 (No. 1) ◽  
pp. 7-13 ◽  
Author(s):  
Abdullah Al Mamun Sohag ◽  
Md. Tahjib-Ul-Arif ◽  
Marian Brestic ◽  
Sonya Afrin ◽  
Md. Arif Sakil ◽  
...  

Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and salicylic acid (SA) exhibit protective effects against a wide array of stresses. In this study, we investigated the relative efficacy of exogenous H<sub>2</sub>O<sub>2</sub> and SA in conferring drought tolerance in rice (Oryza sativa L.). The experiment was repeated two times, firstly in a hydroponic system and secondly in soil. The results revealed that drought hampered germination indices, seedling growth, photosynthetic pigments, and water content, whereas increased proline content. It also triggered higher H<sub>2</sub>O<sub>2</sub> production and consequently elevated lipid peroxidation, which is a particular indication of oxidative damage. However, exogenous H<sub>2</sub>O<sub>2</sub> or SA treatment effectively alleviated oxidative damage in rice seedlings both in hydroponic and soil systems via upregulating antioxidant enzymes. Nevertheless, regulation of proline level and augmentation of plant-water status were crucial to confer drought tolerance. Exogenous H<sub>2</sub>O<sub>2</sub> or SA also protected photosynthetic pigments from oxidative damage that might help to maintain normal photosynthesis under drought. Besides, 5 mmol/L H<sub>2</sub>O<sub>2</sub> and 0.5 or 1 mmol/L SA showed similar effectiveness on mitigating drought stress. Finally, our findings suggest that exogenous H<sub>2</sub>O<sub>2</sub> or SA could evenly be effectual in the amending growth of rice seedlings under drought conditions.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9960
Author(s):  
Ammar Azmat ◽  
Humaira Yasmin ◽  
Muhammad Nadeem Hassan ◽  
Asia Nosheen ◽  
Rabia Naz ◽  
...  

Drought stress hampers the growth and productivity of wheat crop worldwide. Thus far, different strategies have been proposed to improve drought tolerance in wheat but the combined application of plant growth-promoting rhizobacteria formulated bio-fertilizer (BF) and salicylic acid (SA) has not been thoroughly explored yet. Therefore, a pot experiment was conducted to observe the effect of SA, BF, and their combination on wheat plants under optimal and drought stress conditions. Seeds priming was done with BF (107 CFU mL−1). After 2 weeks of germination, SA (one mM) was applied as a foliar spray. Drought stress was applied by withholding water supply at three-leaf stage (30 d old plants) for the next 15 d until soil moisture dropped to 10%. Foliar application of SA increased the bacterial population of BF significantly compared to the sole application of BF under irrigated as well as drought stress conditions. Co-application of BF and foliar spray of SA induced drought tolerance in wheat plants by enhancing plant biomass, photosynthetic pigments, relative water content and osmolytes, and activities of the defense-related system. Plants treated with SA and BF together under drought stress had significantly increased leaf water status, Chl a, Chl b, and carotenoids synthesis by 238%, 125%, 167%, and 122%, respectively. Moreover, the co-application of SA and BF showed maximum SOD, POD, APX, and CAT activities by 165%, 85%, 156%, and 169% in the leaves while 153%, 86%, 116% and 200% in roots under drought stress. Similarly, the combined treatment exhibited a pronounced decrease in MDA content by 54% while increased production of proteins and proline by 145% and 149%, respectively. Our results showed that the co-application of SA and BF induced better drought tolerance as compared with the sole application of SA or BF. The results obtained herein suggest that combined application of BF and SA can be applied to the wheat crop to greatly improve drought tolerance in field conditions.


Author(s):  
L.S. Lopes ◽  
Danúbia Aparecida Costa Nobre ◽  
Willian Rodrigues Macedo

The aim of this study was to evaluate the potential use of two bioregulators, 24-epibrassinolide (BR) and salicylic acid (SA), as attenuators of drought stress on common bean plants (Phaseolus vulgaris L.). This was done by subjecting the plants to three different soil moisture levels, and then analyzing: gas exchange by the leaves, enzymes of antioxidant metabolism (superoxide dismutase, catalase and ascorbate peroxidase), total soluble protein content, photosynthetic pigments, relative leaf water content, and biometric parameters. Neither SA nor BR had significant effects on the parameters of gas exchange and photosynthetic pigments, but they helped to regulate the levels of hydrogen peroxide in the plants, by adjusting both ascorbate peroxidase activity and catalase activity. Therefore, SA and BR are considered to be useful treatments for increasing tolerance to water stress in common bean plants, because their use caused improvements in the plants’ protective mechanisms against drought stress, without any detrimental side effects.


2019 ◽  
Vol 51 (3) ◽  
Author(s):  
Sajjad Moharramnejad ◽  
Omid Sofalian ◽  
Mostafa Valizadeh ◽  
Ali Asghari ◽  
Mohammad Reza Shiri ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1316
Author(s):  
Abida Parveen ◽  
Muhammad Arslan Ashraf ◽  
Iqbal Hussain ◽  
Shagufta Perveen ◽  
Rizwan Rasheed ◽  
...  

The present work reports the assessment of the effectiveness of a foliar-spray of salicylic acid (SA) on growth attributes, biochemical characteristics, antioxidant activities and osmolytes accumulation in wheat grown under control (100% field capacity) and water stressed (60% field capacity) conditions. The total available water (TAW), calculated for a rooting depth of 1.65 m was 8.45 inches and readily available water (RAW), considering a depletion factor of 0.55, was 4.65 inches. The water contents corresponding to 100 and 60% field capacity were 5.70 and 1.66 inches, respectively. For this purpose, seeds of two wheat cultivars (Fsd-2008 and S-24) were grown in pots subjected to water stress. Water stress at 60% field capacity markedly reduced the growth attributes, photosynthetic pigments, total soluble proteins (TSP) and total phenolic contents (TPC) compared with control. However, cv. Fsd-2008 was recorded as strongly drought-tolerant and performed better compared to cv. S-24, which was moderately drought tolerant. However, water stress enhanced the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and membrane electrolyte leakage (EL) and modulated the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as accumulation of ascorbic acid (AsA), proline (Pro) and glycine betaine (GB) contents. Foliar-spray with salicylic acid (SA; 0, 3 mM and 6 mM) effectively mitigated the adverse effects of water stress on both cultivars. SA application at 6 mM enhanced the shoot and root length, as well as their fresh and dry weights, and improved photosynthetic pigments. SA foliage application further enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nonenzymatic antioxidants such as ascorbic acid and phenolics contents. However, foliar-spray of SA reduced MDA, H2O2 and membrane permeability in both cultivars under stress conditions. The results of the present study suggest that foliar-spray of salicylic acid was effective in increasing the tolerance of wheat plants under drought stress in terms of growth attributes, antioxidant defense mechanisms, accumulation of osmolytes, and by reducing membrane lipid peroxidation.


2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

Sign in / Sign up

Export Citation Format

Share Document