scholarly journals Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9960
Author(s):  
Ammar Azmat ◽  
Humaira Yasmin ◽  
Muhammad Nadeem Hassan ◽  
Asia Nosheen ◽  
Rabia Naz ◽  
...  

Drought stress hampers the growth and productivity of wheat crop worldwide. Thus far, different strategies have been proposed to improve drought tolerance in wheat but the combined application of plant growth-promoting rhizobacteria formulated bio-fertilizer (BF) and salicylic acid (SA) has not been thoroughly explored yet. Therefore, a pot experiment was conducted to observe the effect of SA, BF, and their combination on wheat plants under optimal and drought stress conditions. Seeds priming was done with BF (107 CFU mL−1). After 2 weeks of germination, SA (one mM) was applied as a foliar spray. Drought stress was applied by withholding water supply at three-leaf stage (30 d old plants) for the next 15 d until soil moisture dropped to 10%. Foliar application of SA increased the bacterial population of BF significantly compared to the sole application of BF under irrigated as well as drought stress conditions. Co-application of BF and foliar spray of SA induced drought tolerance in wheat plants by enhancing plant biomass, photosynthetic pigments, relative water content and osmolytes, and activities of the defense-related system. Plants treated with SA and BF together under drought stress had significantly increased leaf water status, Chl a, Chl b, and carotenoids synthesis by 238%, 125%, 167%, and 122%, respectively. Moreover, the co-application of SA and BF showed maximum SOD, POD, APX, and CAT activities by 165%, 85%, 156%, and 169% in the leaves while 153%, 86%, 116% and 200% in roots under drought stress. Similarly, the combined treatment exhibited a pronounced decrease in MDA content by 54% while increased production of proteins and proline by 145% and 149%, respectively. Our results showed that the co-application of SA and BF induced better drought tolerance as compared with the sole application of SA or BF. The results obtained herein suggest that combined application of BF and SA can be applied to the wheat crop to greatly improve drought tolerance in field conditions.

2011 ◽  
Vol 62 (1) ◽  
pp. 25 ◽  
Author(s):  
Muhammad Arslan Ashraf ◽  
Muhammad Sajid Aqeel Ahmad ◽  
Muhammad Ashraf ◽  
Fahad Al-Qurainy ◽  
Muhammad Yasin Ashraf

The effectiveness of exogenous application of K in ameliorating the adverse effects of waterlogging on cotton plants was assessed under greenhouse conditions. Forty-day-old plants were subjected to continuous flooding for 1 week and then K (60 kg ha–1) was applied either as soil application, foliar spray, or in combination. The waterlogging treatment significantly reduced plant height and fresh and dry biomass, photosynthetic pigments, gas exchange parameters and nutrient accumulation (N, K+, Ca2+) in stem, root and leaves of cotton plants, Although Mg2+ content in roots increased significantly due to waterlogging, it was not affected in stem or leaves. In contrast, Mn2+ and Fe2+ contents generally increased under waterlogged conditions. All water relation parameters were also significantly influenced by waterlogging stress. Waterlogged plants supplemented with K showed a significant improvement in growth, photosynthetic pigments and photosynthetic capacity. Potassium supplementation also improved nutrient uptake of waterlogged plants and resulted in significantly higher accumulation of K+, Ca2+, N, Mn2+ and Fe2+ than those plants not supplied with K. Although all modes of K application were effective in mitigating the inhibitory effects of waterlogging, the combined application through soil + foliar spray yielded the best results and the foliar application (alone) being the least effective.


2020 ◽  
Vol 66 (No. 1) ◽  
pp. 7-13 ◽  
Author(s):  
Abdullah Al Mamun Sohag ◽  
Md. Tahjib-Ul-Arif ◽  
Marian Brestic ◽  
Sonya Afrin ◽  
Md. Arif Sakil ◽  
...  

Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and salicylic acid (SA) exhibit protective effects against a wide array of stresses. In this study, we investigated the relative efficacy of exogenous H<sub>2</sub>O<sub>2</sub> and SA in conferring drought tolerance in rice (Oryza sativa L.). The experiment was repeated two times, firstly in a hydroponic system and secondly in soil. The results revealed that drought hampered germination indices, seedling growth, photosynthetic pigments, and water content, whereas increased proline content. It also triggered higher H<sub>2</sub>O<sub>2</sub> production and consequently elevated lipid peroxidation, which is a particular indication of oxidative damage. However, exogenous H<sub>2</sub>O<sub>2</sub> or SA treatment effectively alleviated oxidative damage in rice seedlings both in hydroponic and soil systems via upregulating antioxidant enzymes. Nevertheless, regulation of proline level and augmentation of plant-water status were crucial to confer drought tolerance. Exogenous H<sub>2</sub>O<sub>2</sub> or SA also protected photosynthetic pigments from oxidative damage that might help to maintain normal photosynthesis under drought. Besides, 5 mmol/L H<sub>2</sub>O<sub>2</sub> and 0.5 or 1 mmol/L SA showed similar effectiveness on mitigating drought stress. Finally, our findings suggest that exogenous H<sub>2</sub>O<sub>2</sub> or SA could evenly be effectual in the amending growth of rice seedlings under drought conditions.


2021 ◽  
Vol 42 (5) ◽  
pp. 1274-1280
Author(s):  
S. Sahni ◽  
◽  
S. Kumar ◽  
B.D. Prasad ◽  
◽  
...  

Aim: The aim of the present study was to evaluate the ability of integration of salicylic acid, vermicompost and bioagent for effective management of chickpea wilt disease. Methodology: The effectiveness of salicylic acid and ZnSO4 unaided and in combination with Plant growth-promoting rhizobacteria (PGPR) and vermicompost were evaluated against Fusarium wilt of chickpea under natural condition. Three sets of experiment with nine treatments were conducted in earthen pots in completely randomized design. Ten seeds of wilt susceptible chickpea variety JG 62 were sown. Twenty-days-old plants were sprayed with salicylic acid (Set I), ZnSO4 (Set II) and distilled H2O (Set III). After 24 hr of foliar spray, the whole set of treatment was inoculated with Fusarium oxysporum f. sp. ciceri inoculums, except uninoculated control. The number of wilted seedlings in each pot for each treatment were recorded at 10, 20 and 30 days post-inoculation (dpi) and compared with uninoculated pots. Results: The combined effect of vermicompost amendment @15% and pre-inoculation treatment of salicylic acid showed 0.00, 6.67 and 6.67% wilt incidence whereas treatments having ZnSO4 as pre-inoculation foliar spray resulted in 0.00, 13.33 and 13.33% wilt incidence at 10, 20 and 30 dpi, respectively. Further, the combined treatment of 15% vermicompost along with seed bacterization and pre-inoculation foliar spray of salicylic acid showed complete protection against F. oxysporum f. sp. ciceri. The beneficial effect of vermicompost and PGPR isolate on root and shoot length, and fresh and dry weight of chickpea plants were also observed. Interpretation: High potential for integrating vermicompost, bioagent and foliar application of salicylic acid to surrogate chemical fungicides for eco-friendly and sustainable management of wilt disease in chickpea.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1316
Author(s):  
Abida Parveen ◽  
Muhammad Arslan Ashraf ◽  
Iqbal Hussain ◽  
Shagufta Perveen ◽  
Rizwan Rasheed ◽  
...  

The present work reports the assessment of the effectiveness of a foliar-spray of salicylic acid (SA) on growth attributes, biochemical characteristics, antioxidant activities and osmolytes accumulation in wheat grown under control (100% field capacity) and water stressed (60% field capacity) conditions. The total available water (TAW), calculated for a rooting depth of 1.65 m was 8.45 inches and readily available water (RAW), considering a depletion factor of 0.55, was 4.65 inches. The water contents corresponding to 100 and 60% field capacity were 5.70 and 1.66 inches, respectively. For this purpose, seeds of two wheat cultivars (Fsd-2008 and S-24) were grown in pots subjected to water stress. Water stress at 60% field capacity markedly reduced the growth attributes, photosynthetic pigments, total soluble proteins (TSP) and total phenolic contents (TPC) compared with control. However, cv. Fsd-2008 was recorded as strongly drought-tolerant and performed better compared to cv. S-24, which was moderately drought tolerant. However, water stress enhanced the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and membrane electrolyte leakage (EL) and modulated the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as accumulation of ascorbic acid (AsA), proline (Pro) and glycine betaine (GB) contents. Foliar-spray with salicylic acid (SA; 0, 3 mM and 6 mM) effectively mitigated the adverse effects of water stress on both cultivars. SA application at 6 mM enhanced the shoot and root length, as well as their fresh and dry weights, and improved photosynthetic pigments. SA foliage application further enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nonenzymatic antioxidants such as ascorbic acid and phenolics contents. However, foliar-spray of SA reduced MDA, H2O2 and membrane permeability in both cultivars under stress conditions. The results of the present study suggest that foliar-spray of salicylic acid was effective in increasing the tolerance of wheat plants under drought stress in terms of growth attributes, antioxidant defense mechanisms, accumulation of osmolytes, and by reducing membrane lipid peroxidation.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


2018 ◽  
Vol 4 (2) ◽  
pp. 254-264 ◽  
Author(s):  
Eman Zekry Attia ◽  
Rehab Mahmoud Abd El-Baky ◽  
Samar Yehia Desoukey ◽  
Mahmoud Abd El Hakeem Mohamed ◽  
Mokhtar Mohamed Bishr ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 4020 ◽  
Author(s):  
Xinbo Wang ◽  
Yanhua Xu ◽  
Jingjing Li ◽  
Yongzhe Ren ◽  
Zhiqiang Wang ◽  
...  

Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat.


Sign in / Sign up

Export Citation Format

Share Document