scholarly journals 3D-Chaotic discrete system of vector borne diseases using environment factor with deep analysis

2021 ◽  
Vol 7 (3) ◽  
pp. 3972-3987
Author(s):  
Shaymaa H. Salih ◽  
◽  
Nadia M. G. Al-Saidi ◽  

<abstract><p>Vector-Borne Disease (VBD) is a disease that consequences as of an infection communicated to humans and other animals by blood-feeding anthropoids, like mosquitoes, fleas, and ticks. Instances of VBDs include Dengue infection, Lyme infection, West Nile virus, and malaria. In this effort, we formulate a parametric discrete-time chaotic system that involves an environmental factor causing VBD. Our suggestion is to study how the inclusion of the parasitic transmission media (PTM) in the system would impact the analysis results. We consider a chaotic formula of the PTM impact, separating two types of functions, the host and the parasite. The considered applications are typically characterized by chaotic dynamics, and thus chaotic systems are suitable for their modeling, with corresponding model parameters, that depend on control measures. Dynamical performances of the suggested system and its global stability are considered.</p></abstract>

Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Jessica E. Manning ◽  
Tineke Cantaert

The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this “bite site” microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the ‘micro’–from microenvironments to microbiomes to microneedles–may yield an improved generation of vector-borne disease vaccines in today’s increasingly complex world.


2015 ◽  
Vol 12 (108) ◽  
pp. 20150367 ◽  
Author(s):  
Chris P. Jewell ◽  
Richard G. Brown

Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host–vector–pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks.


2021 ◽  
Author(s):  
Phineas T. Hamilton ◽  
Elodie Maluenda ◽  
Anouk Sarr ◽  
Alessandro Belli ◽  
Georgia Hurry ◽  
...  

AbstractBackgroundVector-borne diseases remain major causes of human morbidity and mortality. It is increasingly recognized that the community of microbes inhabiting arthropods can strongly affect their vector competence, but the role of the tick microbiome in Borrelia transmission – the cause of Lyme disease – remains unclear.ResultsHere, we use a large-scale experiment to clarify the reciprocal interactions between Borrelia afzelii and the microbiome of Ixodes ricinus, its primary vector. In contrast to other reports, we find that depletion of the bacterial microbiome in larval ticks has no effect on their subsequent acquisition of B. afzelii during blood feeding on infected mice. Rather, exposure to B. afzelii-infected hosts drives pervasive changes to the tick microbiome, decreasing overall bacterial abundance, shifting bacterial community composition, and increasing bacterial diversity. These effects appear to be independent of the acquisition of B. afzelii by ticks, suggesting they are mediated by physiological or immunological aspects of B. afzelii infection in the rodent host.ConclusionsManipulation of the microbiome of I. ricinus larvae had no effect on their ability to acquire B. afzelii. In contrast, B. afzelii infection in the mouse had dramatic effects on the composition of the gut microbiome in I. ricinus nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector.


2018 ◽  
Author(s):  
Anastasia Diakou ◽  
Angela Di Cesare ◽  
Simone Morelli ◽  
Mariasole Colombo ◽  
Lenaig Halos ◽  
...  

AbstractThe present study investigated the presence of endo- and ecto-parasites, and vector-borne pathogens, in dogs from four islands of Greece. A total of 200 owned and sheltered dogs were examined with different microscopic, serological and molecular methods.Of the examined dogs, 130 (65%) were positive for one or more parasites and/or vector-borne pathogens. The most common zoonotic intestinal helminths recorded were Ancylostomatidae (12.5%) and Toxocara canis (3.5%). Ninety-three dogs (46.5%) seroreacted to Rickettsia conorii. Twenty-two (11%) of them were also PCR positive and 7 (3.5%) showed corpuscoles suggestive of Rickettsia spp. on the blood smears. Nineteen dogs (9.5%) were seropositive for Ehrlichia canis, three of them being also PCR positive. Dogs positive for Anaplasma phagocytophilum-Anaplasma platys (1%), Dirofilaria immitis (0.5%) and Babesia canis (0.5%) were also found. Fleas and ticks were recorded in 53 (26.5%) and 50 (25%) dogs and all specimens were identified as Ctenocephalides felis felis and Rhipicephalus sanguineus sensu latu. Binary multiple univariate Generalized Linear Models were used to investigate factors and clinical signs related to the recorded positivity, while the association of specific signs with the pathogens was evaluated using tests of independence. Knowledge of occurrence and impact of zoonotic parasites and vector-borne pathogens in dog populations is crucial to prevent the infection in animals and people, and to control the risk of spreading of these pathogens in endemic and non-endemic areas.Author summaryBoth owned and sheltered dogs can harbor a variety of intestinal and extra-intestinal endoparasites, as well as vector-borne pathogens and ectoparasites, of zoonotic concern. Dog shelters and stray dogs are present in several touristic areas of Greece, including Sporades and Cyclades islands, where tourists often bring their pets with them, likely travelling from non-endemic to endemic areas. The present study has been carried out with the aim to evaluate the occurrence of the aforementioned pathogens. Data obtained showed that they are present in canine populations of Greece, with possibilities of infection for travelling dogs, which can also contribute to the spreading of zoonotic vector-borne diseases, introducing new pathogens in previously non-endemic areas. For these reasons, a constant monitoring of the epidemiological situation, improving control measures and correct diagnostic approaches are of primary importance for the prevention of canine and human infections, decreasing the spreading of potentially deadly pathogens.


2020 ◽  
Vol 50 (9) ◽  
Author(s):  
Roberta Carvalho de Freitas e Azevedo ◽  
Giovanna Stefani Nosberto Castelli ◽  
Ryan Emiliano da Silva ◽  
Jaciara de Oliveira Jorge Costa ◽  
Renata Tonhosolo ◽  
...  

ABSTRACT: Vector-borne diseases are currently one of the biggest public health concerns worldwide. Dogs, being the closest companion animals to humans, are considered the main reservoir of some of these diseases in the urban environment. Therefore, the study of the disease behavior in dogs can help to understand the disease affecting human health. Serological and molecular diagnoses of Babesia vogeli, Rangelia vitalli, Leishmania infantum, and other trypanosomatids, were performed by immunochromatographic and PCR assays, respectively, on dogs in a dog shelter located in an Atlantic Forest fragment near the Billings Dam, São Bernardo do Campo, São Paulo-Brazil. Our molecular diagnostic results showed a high prevalence of Babesia vogeli, at 20.9% (17/81). No other protozoan was detected in any of the tests. Determining the prevalence of major vector-borne diseases is essential to establish preventive and control measures for zoonotic diseases in animals kept in shelters, in order to minimize the impact of vector-borne diseases on animal health.


1996 ◽  
Vol 33 (04) ◽  
pp. 915-932 ◽  
Author(s):  
P. J. M. Milligan ◽  
D. Y. Downham

Individuals in communities in which different strains of pathogen are circulating can acquire resistance by accumulating immunity to each strain. After considering susceptibility, models of infection and immunity are defined for vector-borne diseases such as malaria and trypanosomiasis. For these models the prevalence of infection, the number of infections per individual, and the mean duration of infection, increase rapidly in young individuals, but decrease in older individuals as immunity is acquired to the various strains of pathogen; the mean interval between successive infections lengthens with age. The bivariate Poisson distribution is shown to be a close approximation to some stochastic processes. The models explain observed cross-sectional patterns of age prevalence, and longitudinal patterns in which individuals typically continue to become infected as they age, albeit with decreasing frequency. In these models the time spent infected depends on parasite diversity, as well as the inoculation and recovery rates. It is shown that control measures can cause an increase in the number of infections and the prevalence of infection in older individuals, and in the average prevalence in the community, even when strain-specific immunity is life-long.


2008 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Mutsuo Kobayashi ◽  
◽  
Osamu Komagata ◽  
Naoko Nihei

Vector-borne diseases result from infections transmitted to humans by blood-feeding arthropods such as mosquitoes, ticks, and fleas. Such cold-blooded animals are influenced by environmental change. A recent IPCC report clearly showed that the emission of greenhouse gases has already changed world climates. Heat waves in Europe, rises in global mean sea level, summer droughts and wild fires, more intense precipitation, and increasing numbers of large cyclones and hurricanes may be typical example of extreme climate phenomena related to global warming. High temperatures may increase survival among arthropods, depending on their vector, behavior, ecology, and valuable factors, and temperate zone warming may accelerate the spread of mosquitoes such asAedes albopictus. The MIROK (K1) Model clearly shows a northern limit forAe.albopictus, particularly in northern Honshu in 2035 and southern and middle Hokkaido Island in 2100 in Japan. The spread of the mosquito vector through global used-tire trading in recent decades to Africa, the Mideast, Europe, and North and South America caused an outbreak of Chikungunya fever in north Italy in 2007. Global warming, extreme climate change, changing physical distribution, and an increase in oversea travel are also expected to influence the epidemiology of vector-borne infectious diseases.


2017 ◽  
Vol 25 (03) ◽  
pp. 441-477
Author(s):  
XINZHI LIU ◽  
PETER STECHLINSKI

Theory is developed for an epidemic model of a seasonally-spreading vector-borne disease using a hybrid system framework. Applicable to diseases spread by mosquitoes (e.g., chikungunya and Zika virus via Aedes albopictus), seasonal variations in transmission are modeled using switching parameters to represent term-time forcing. The vector agent is assumed to exhibit a period of incubation upon infection, modeled using a distribution. Three hybrid control strategies are analyzed in detail: switching cohort immunization, pulse vaccination at pre-specified times, and state-dependent pulse vaccination. Methods from switched systems theory are used to derive threshold disease eradication conditions involving the model parameters; convergence of solutions to a disease-free set or periodic solution is shown. A comprehensive analysis is performed to compare and contrast the different control schemes.


2019 ◽  
Vol 10 (1) ◽  
pp. 32-37
Author(s):  
Md Mahfuzar Rahman ◽  
Md Atiqur Rahman ◽  
Rizona Jnui ◽  
Abu Kawser ◽  
Khalid Omar Shahin

Background: The vector borne diseases pose an immense public health concern and also a growing urban and rural problem. The aim of this study was to findout the perception and practices among the rural households regarding vector related diseases in some selected villages of Dhamrai Upazila. Material and Methods: This descriptive cross sectional study was carried out among 1380 respondents by purposive sampling technique during the period from 6th to 8th January, 2018 in different villages of Dhamrai Upazila, Dhaka.. Results: Then study revealed that majority of the respondents 89% were Muslims by religion and about 65% respondents were found within the age 25-55 years. (mean age 37.81±14.72 years). Out of 1380 respondents, majority 87% & 86% mentioned Mosquitos and Houseflies as vectors transmitting the diseases followed by 48% Itch mite, 45% Louse and 27% Sandflies. About 85% & 88% mentioned Malaria & Dengue fever transmitted by vectors followed by 58% Chikungunya, 42% Kala azar, 13% Filariasis and 44% Typhoid fever. However, 71%, 83%, 59% & 3% respondents mentioned Mosquito bite as the mode of transmission of Malaria, Chikungunya and Filariasis respectively. About 88%, 75%, 44% and 39% respondents mentioned Personal protection, Avoidance of water collection, Fogging and Insecticidal spraying as the vector control measures. Nevertheless, 92%, 81% and 30% respondents are found practiced Mosquito net, Mosquito coil and Screening of windows as their usual vector control measures. Conclusion: In this study community awareness in terms of perceptions, knowledge and practices regarding vector borne diseases are found deficient. There should be intensified efforts in promoting personal protective measures through creating public awareness towards prevention of vector borne diseases in the locality. Anwer Khan Modern Medical College Journal Vol. 10, No. 1: Jan 2019, P 32-37


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 809 ◽  
Author(s):  
Ahyun Hong ◽  
Ricardo Andrade Zampieri ◽  
Jeffrey Jon Shaw ◽  
Lucile Maria Floeter-Winter ◽  
Maria Fernanda Laranjeira-Silva

Leishmaniases are zoonotic vector-borne diseases caused by protozoan parasites of the genus Leishmania that affect millions of people around the globe. There are various clinical manifestations, ranging from self-healing cutaneous lesions to potentially fatal visceral leishmaniasis, all of which are associated with different Leishmania species. Transmission of these parasites is complex due to the varying ecological relationships between human and/or animal reservoir hosts, parasites, and sand fly vectors. Moreover, vector-borne diseases like leishmaniases are intricately linked to environmental changes and socioeconomic risk factors, advocating the importance of the One Health approach to control these diseases. The development of an accurate, fast, and cost-effective diagnostic tool for leishmaniases is a priority, and the implementation of various control measures such as animal sentinel surveillance systems is needed to better detect, prevent, and respond to the (re-)emergence of leishmaniases.


Sign in / Sign up

Export Citation Format

Share Document