Passion fruit seed oil: extraction and subsequent transesterification reaction

2021 ◽  
Vol 72 (2) ◽  
pp. e409
Author(s):  
T.B. Massa ◽  
I.J. Iwassa ◽  
N. Stevanato ◽  
V.A.S. Garcia ◽  
C. Silva

This work aims to remove the oil from passion fruit seeds using ethanol as solvent and then to carry out the transesterification of the product from the extraction step (oil + ethanol). The effects of operational variables in the ultrasound-assisted extraction (UAE) were evaluated and traditional extraction was performed for comparison. The extraction product was directed to the reaction step using an enzymatic catalyst. UAE provided oil yield from 12.32 to 21.76%, and the maximum value (73.7% of the traditional extraction yield) was obtained at 60 °C and 50 min using a solvent-to-seed ratio of 4. Oil removal was favored by increases in the investigated variables. g-tocopherol, δ-tocopherol and a high concentration of polyunsaturated fatty acids were identified in the oils. The oil obtained by UAE presented higher phytosterol contents. From the reaction step, samples were obtained with higher concentrations of ethyl esters, in addition to emulsifiers (diglycerides and monoglycerides).


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 931
Author(s):  
Cristina Reche ◽  
Carmen Rosselló ◽  
Mónica M. Umaña ◽  
Valeria Eim ◽  
Susana Simal

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.



Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 389 ◽  
Author(s):  
Adane Tilahun Getachew ◽  
Charlotte Jacobsen ◽  
Susan Løvstad Holdt

Natural phenolic compounds are important classes of plant, microorganism, and algal secondary metabolites. They have well-documented beneficial biological activities. The marine environment is less explored than other environments but have huge potential for the discovery of new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical industries. To survive in a very harsh and challenging environment, marine organisms like several seaweed (macroalgae) species produce and accumulate several secondary metabolites, including marine phenolics in the cells. Traditionally, these compounds were extracted from their sample matrix using organic solvents. This conventional extraction method had several drawbacks such as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a huge volume of one or more organic solvents, which consequently results in environmental pollution. To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from researchers around the world. Therefore, in this review, the most recent and emerging technologies are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck for upscaling of these technologies are also presented.



2020 ◽  
Vol 5 (9) ◽  
pp. 1004-1012
Author(s):  
Junior Franck Ekorong Akouan Anta ◽  
Biloa Dorothée Marcelle ◽  
Bruno Fabrice Siewe ◽  
Raghavarao K. S. M. S.

Mango seed kernels are by-products of the consumption and transformation of mango fruits (Mangifera indica L.). Many ways of valorisation have been proposed, and among them, their phenolic compounds extraction. To increase the extraction yield, ultrasound-assisted extraction was modelled and optimized. The 4 factors Central Composite design associated with the Response Surface Methodology (RSM) were used to achieve that goal. The effect of extraction time, temperature, stirring rate and the Ultrasound Amplitude, on the total phenolic compound extraction yield and the total reducing power of the extract, were studied and modelled. The modelling allows us to do a multi-response optimization to identify the best-operating conditions to achieve at the same time the highest extraction yield and antioxidant capacity. The optimal operating conditions achieved were 41.82 min of extraction time, 54.75⁰C as extraction time, under 266.67 rpm as stirring rate, and 100% ultrasound amplitude. With an expected extraction yield of 71.35 mg GA/g, and 123.058 mg AA/g of total reducing power. 2 extraction cycles, under these conditions, are enough to extract a maximum of the phenolic content, under the described conditions.



Author(s):  
Farida Berkani ◽  
Maria Luísa Serralheiro ◽  
Farid Dahmoune ◽  
Malik Mahdjoub ◽  
Nabil Kadri ◽  
...  

The purpose of this review is to compile the literature published about different aspects of microwave-assisted extraction (MAE) use and ultrasound-assisted extraction (UAE) applied on jujube worldwide and to compare the results on the antioxidant activity obtained for each extraction method. As a result of the increased consumers demand for natural products, as well as for those of agro-food, nutraceutical, cosmetic industries, and green extraction techniques are nowadays trending to be potential alternatives that can improve antioxidant yield and its quality from an economical and environmental point of view by reducing time, energy, and solvent consumption. Ultrasounds and microwaves are widely used methods in the extraction of active principles due to their cavitation and dipolar rotation effect, respectively. These two techniques provide efficiency of extraction while minimizing the time and preserving the quality of the food matrix, overcoming the disadvantages of conventional techniques characterized by their consumption of large quantities of solvents and providing a sparse quantity of extraction. Jujube, a shrub with a high antioxidant potential, which can be affected by various extraction conditions can be the target of UAE and MAE to increase the antioxidant extraction yield. Exploiting the beneficial properties such as the antioxidant activity can lead to an industrialization process, replacing therefor synthetic antioxidants with natural compounds. These can also help in the development of new nutraceuticals and can be used, for instance, in agro-food industries as preservatives. Keywords : Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), antioxidants, Ziziphus lotus (L.) Lam plant.



2020 ◽  
Author(s):  
Nur Haziqah Zakirat Abd Razak ◽  
fazila binti zakaria ◽  
Mohd Basyaruddin bin Abdul Rahman ◽  
Siti Efliza Ashari

Abstract In this study, Response surface methodology (RSM) was applied to optimize the yield of crude methanolic extract of Mitragyna speciosa leaves using Ultrasound-assisted extraction (UAE). The crude methanolic extract and its fractions were quantified in terms of total phenolic content and total flavonoid content, along with characterized using Fourier-transform infrared and Gas chromatography–mass spectrometry. The results showed the maximum yield of 49.72% at the optimal conditions (temperature, 34 °C; time, 25 min; and volume of solvent, 166 mL). The recovery crude methanolic extract for TPC and TFC were 137.3 ± 15.7 mg GAE/g and 90.3 ± 15.3 mg RE/g, respectively.



Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 322 ◽  
Author(s):  
Mircea Oroian ◽  
Florin Ursachi ◽  
Florina Dranca

The aim of this study was to evaluate the extraction efficiency of polyphenols from crude pollen by an ultrasonic process. Prior to the polyphenols extraction, the crude pollen was defatted. The extraction from defatted pollen was carried out by varying four extraction parameters: ultrasonic amplitude (20%, 60% and 100%), solid/liquid ratio (10 g/L, 20 g/L and 30 g/L), temperature (35, 50 and 65 °C) and time (10, 20 and 30 min). The extracts were analyzed in terms of extraction yield (%), total phenolic content (TPC) and total flavones content (TFC). The extracted oil was analyzed in terms of fatty acids composition; myristic acid (159.1 µg × g−1) and cis-14-pentadecenoic acid (106.6 µg·g−1) were found in the highest amount in the pollen oil. The optimum conditions of extraction were determined and were, as follows: 100% amplitude of ultrasonic treatment, 30 g/L solid/liquid ratio, 40.85 °C and 14.30 min, which led to the extraction of 366.1 mg GAE/L of TPC and 592.2 mg QE/g of TFC, and also to an extraction yield of 1.92%.



2019 ◽  
Vol 92 (3) ◽  
pp. 369-377
Author(s):  
Barbara Fumić ◽  
Mario Jug ◽  
Marijana Zovko Končić

Ultrasound-assisted extraction of phenolic antioxidants from Lotus corniculatus was optimized using response surface methodology. The extraction was performed according to the Box–Behnken design with ethanol concentration, temperature, and pH, as independent variables. The responses were extraction yield, DPPH radical scavenging activity (RSA) IC50 and content of different phenolic compounds (total phenols, flavonoids and phenolic acids, as well as quercetin, kaempferol and genistein derivatives). The models were used to calculate best conditions for maximal extraction of phenolic compounds and antiradical activity. Use of the optimized extraction parameters increased the content of quercetin and kaempferol derivatives more than tenfold (from 6.07 to 65.10 mg mL–1 and 6.69 to 92.75 mg mL–1, respectively). The results of this work stress the importance of careful selection of conditions for flavonoids extraction. Abundance of bioactive phenolics in L. corniculatus extracts obtained under optimized extraction conditions opens the possibility for wider utilization of this plant.



Author(s):  
Tales Prado Alves ◽  
Carina Contini Triques ◽  
Paula Alessandra Palsikowski ◽  
Camila da Silva ◽  
Mônica Lady Fiorese ◽  
...  


2018 ◽  
Vol 36 (No. 1) ◽  
pp. 98-108 ◽  
Author(s):  
Aysun Yucetepe ◽  
Oznur Saroglu ◽  
Fatih Bildik ◽  
Beraat Ozcelik ◽  
Ceren Daskaya-Dikmen

The protein extraction from the blue-green microalgae Spirulina platensis was carried out using ultrasound-assisted extraction and response surface methodology (RSM) was used to optimise extraction conditions. Extraction yield, total phenolic content, antioxidant activity and in vitro protein digestibility of protein extracts were determined. A three factors Box-Behnken design (BBD) of experiments was employed at pH values of 7, 8 and 9; temperatures of 25, 35, and 45°C; and for durations of 60, 90 and 120 minutes. Based on the RSM analysis, optimum extraction conditions (temperature 45°C, pH 7.46 and time 120 min) were obtained for extraction yield (29.05%), total phenolic content (3.52 mg caffeic acid equivalent/g dw), antioxidant activity (11.32 mg Trolox equivalent/g dw) and in vitro protein digestibility (99.36%). We report the first evaluation of the in vitro protein digestibility of Spirulina platensis and find it to be over 90%. This value is higher than the in vitro protein digestibility values of proteins obtained from other algae and plant species, and, in particular, is greater than that of commercial soybean protein isolate.



2012 ◽  
Vol 610-613 ◽  
pp. 3410-3415
Author(s):  
Yu Qin Tang ◽  
Yi Tao Zhao

The purpose of this study was to select the optimum ultrasound-assisted extraction (UAE) conditions for the extraction of polysaccharides from Pleurotus eryngii (DC. ex Fr.) Que (P. eryngii ). The main factors that affect the extraction yield of polysaccharides such as solid:liquid ratio, ultrasonic power, extraction time and extraction temperature were studied individually. An orthogonal experiment was designed to optimize the extraction parameters. It was found that UAE method was a reliable, simple and effective method for fast extraction of polysaccharides from P. eryngii. The optimum UAE conditions were as followings: Solid:liquid ratio of 1:35, Ultrasonic power of 55 W, Extraction time of 30 min and extraction temperature of 45°C.



Sign in / Sign up

Export Citation Format

Share Document