scholarly journals Cellular IOT using nRF9160kit

Author(s):  
Arvind Vishnubhatla

The current vision of internet of things aims at connecting anything with everything. It is estimated that there will be 18 billion connected devices in 2022. Applications   like utility meters, robotics, smart street lighting, process automation, solar and wind farms are expected to grow. High end requirements for automated driving, industrial automation and e-health exist. Cellular IOT is expected to bring new use cases to address latest requirements in the market. There is a need to provide large coverage in a power efficient manner while providing a high battery life. There is a need to have a kit which connects seamlessly and has a small form factor. The requirements on latency and throughput are relaxed in some cases while stringent in others. Stringent requirements make use of more radio resources. There is increased demand for system capacity and network availability. In this paper we make use of nRF9160 kit a low-cost device where a reduction in the cost and complexity has been achieved. The performance objectives of coverage, throughput, latency, capacity, power efficiency and complexity are met. This kit provides a reliable and future proof solution in the long term. The kit is built for the global market and allows roaming over multiple networks.

Author(s):  
Laxmi Sharma

It is expected that internet of things (IoT) will deal with the major activities in the connected living environment as well as the industrial processes. All these aspects are going to be real in the frameworks of the fifth-generation (5G) mobile networks. 5G-based narrowband IoT (NB-IoT) networks have the capability to serve various innovative IoT applications at a great extent. NB-IoT is third generation partnership project (3GPP) standardized low power wide area (LPWA) technology which is designed for IoT devices requiring long battery life, low cost, worldwide coverage, and high system capacity. To improve the performance, 3GPP has agreed that the NB-IoT will continue evolving as part of the 5G specifications. NB-IoT along with 5G will work in several connected living applications. This combination will also be very useful in the industrial environments which need high data rates and low latency. All these features will be supported by 5G in the future. Similarly, applications with low data rates in the IoT world will be supported by NB-IoT. So 5G and NB-IoT are going to be a popular combination for several new applications.


2021 ◽  
pp. 1-43
Author(s):  
Richard Terrill ◽  
Uwe Starossek

Abstract The twin rotor damper (TRD), an active mass damping device, is used for the vibration control of a multi-degree-of-freedom (MDOF) system of oscillators. A single TRD unit consists of two eccentric control masses rotating about two parallel axes. In its principle mode of operation, the continuous rotation mode (CRM), the control masses rotate with a constant angular velocity in opposite directions; producing a monofrequent harmonic control force in an energy and power efficient manner. Extensive research has shown the effectiveness of the TRD in the CRM for systems with a single dominate mode of vibration. In this paper, the application of a single and multiple TRD units operating in the CRM is investigated for the control of MDOF system of oscillators. The influence of the monofrequent control force produced by the TRD on the MDOF system of oscillators is investigated analytically. Subsequently, the analysis is inverted and the influence of the MDOF system of oscillators on the TRD is studied, in particular its power efficiency and damping performance. Finally, the power efficiency and damping performance of the TRD for the control of a system with two modes of vibration is analytically compared to that of a conventional active mass damping device. It is shown that in most cases, the TRD achieves greater damping performance in a more power efficient manner than a conventional active mass damper of similar size and mass.


2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


2021 ◽  
Vol 11 (14) ◽  
pp. 6405
Author(s):  
Pere Marti-Puig ◽  
Alejandro Bennásar-Sevillá ◽  
Alejandro Blanco-M. ◽  
Jordi Solé-Casals

Today, the use of SCADA data for predictive maintenance and forecasting of wind turbines in wind farms is gaining popularity due to the low cost of this solution compared to others that require the installation of additional equipment. SCADA data provides four statistical measures (mean, standard deviation, maximum value, and minimum value) of hundreds of wind turbine magnitudes, usually in a 5-min or 10-min interval. Several studies have analysed the loss of information associated with the reduction of information when using five minutes instead of four seconds as a sampling frequency, or when compressing a time series recorded at 5 min to 10 min, concluding that some, but not all, of these magnitudes are seriously affected. However, to our knowledge, there are no studies on increasing the time interval beyond 10 min to take these four statistical values, and how this aggregation affects prognosis models. Our work shows that, despite the irreversible loss of information that occurs in the first 5 min, increasing the time considered to take the four representative statistical values improves the performance of the predicted targets in normality models.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.


2021 ◽  
Vol 7 (7) ◽  
pp. 541
Author(s):  
Lúcia P. S. Pimenta ◽  
Dhionne C. Gomes ◽  
Patrícia G. Cardoso ◽  
Jacqueline A. Takahashi

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.


2022 ◽  
Vol 21 (1) ◽  
pp. 1-22
Author(s):  
Dongsuk Shin ◽  
Hakbeom Jang ◽  
Kiseok Oh ◽  
Jae W. Lee

A long battery life is a first-class design objective for mobile devices, and main memory accounts for a major portion of total energy consumption. Moreover, the energy consumption from memory is expected to increase further with ever-growing demands for bandwidth and capacity. A hybrid memory system with both DRAM and PCM can be an attractive solution to provide additional capacity and reduce standby energy. Although providing much greater density than DRAM, PCM has longer access latency and limited write endurance to make it challenging to architect it for main memory. To address this challenge, this article introduces CAMP, a novel DRAM c ache a rchitecture for m obile platforms with P CM-based main memory. A DRAM cache in this environment is required to filter most of the writes to PCM to increase its lifetime, and deliver highest efficiency even for a relatively small-sized DRAM cache that mobile platforms can afford. To address this CAMP divides DRAM space into two regions: a page cache for exploiting spatial locality in a bandwidth-efficient manner and a dirty block buffer for maximally filtering writes. CAMP improves the performance and energy-delay-product by 29.2% and 45.2%, respectively, over the baseline PCM-oblivious DRAM cache, while increasing PCM lifetime by 2.7×. And CAMP also improves the performance and energy-delay-product by 29.3% and 41.5%, respectively, over the state-of-the-art design with dirty block buffer, while increasing PCM lifetime by 2.5×.


2021 ◽  
Author(s):  
Maria C. Iglesias ◽  
Philip S. McMichael ◽  
Osei A. Asafu-Adjaye ◽  
Brian K. Via ◽  
Maria S. Peresin

Abstract Wood-based panels are commonly used as building materials for interior and exterior purposes. Their production and utilization have increased over the past decades due to the useful properties they present. Adhesive-bonded products make up to 80% of the wood alternatives on the global market, and of that, urea-formaldehyde (UF) makes up approximately 81% of the resins used. Formaldehyde-based resins are used due to their effectiveness and low cost, as well as their ease of application and lack of color. Nevertheless, their main disadvantages are the lack of tackiness and the emission of formaldehyde over time. To improve UF performance, the utilization of microfibrillated cellulose, has been demonstrated to be effective. However, more understanding on the mechanisms of the interactions is of relevant importance. In this work, we studied interfacial interactions between UF with bleached (BCNF) and unbleached (LCNF) cellulose nanofibrils using Quartz Crystal Microbalance with dissipation monitoring (QCM-D) technique observing the superior performance of lignin-containing CNF. Additionally, the surface free energies were investigated using Contact Angle Measurements (CA) showing a decrease of the values mainly when utilizing LCNF, which was later correlated with the wettability properties of the particle boards (PBs). PBs with different adhesive/CNF formulations were produced showing larger improvements when adding LCNF in terms of modulus of elasticity (MOE), modulus of rupture (MOR), and internal bonding (IB). To gain a better understanding on the interactions between CNF and UF, CNF was fully characterized in terms of morphology, chemical composition, charge density, as well as thermal and colloidal stability.


2016 ◽  
Vol 12 (06) ◽  
pp. 58
Author(s):  
Razi Iqbal ◽  
Sharif Arif ◽  
H.H.R Sherazi

The paper discusses a proposed model for car parking system based on cluster head routing protocol utilizing a low cost and power efficient communication technology, ZigBee (IEEE 802.15.4). The model is designed in a way that car parking is divided into different clusters and each cluster has a head which acts a messenger for transmitting information to other heads and the coordinator of the network. Each cluster head is a ZigBee Host (Router) which collects the information of car presence in the parking slot. This information is then passed to the coordinator of the network which is used to display the information of available parking slots in a specific car parking area. Since there is only one coordinator in the network, so heads can transmit information to the coordinator using multi-hop communication if direct communication is not possible. Several simulations were performed to gauge the efficiency of the proposed model, and results show that the proposed model is reliable in communication and efficient in its operation.


Sign in / Sign up

Export Citation Format

Share Document