scholarly journals Study on the Lower Extremity Rehabilitation Device RHleg

Author(s):  
Dao Minh Duc ◽  
Pham Dang Phuoc ◽  
Tran Xuan Tuy

<p class="0abstract">This paper introduces a device to support lower extremity rehabilitation for stroke patients. First, the device's mechanical structure has been presented; the device has a simple structure and fully meets the exercise function for the patient. The equipment is controlled by control and monitoring software, which is designed from Visual Basic software. The control circuit is the Arduino 2560 circuit, responsible for receiving the angle sensor signal and measuring the current during operation. In addition, the control circuit provides control signals to the actuator and communicates with the software using the rs232 cable. Next, the mathematical model of the device has been established, and we use MatLab software to simulate the response of the device to the PID controller. Simulation results for fast response time and slight overshoot. Finally, an experiment on volunteers was conducted, the results showed that the device was stable and safe to operate. Thus, the RHleg device has been successfully designed and manufactured, tested on volunteers with good results, and this is the basis for us to continue moving towards patient testing.</p>

2018 ◽  
Vol 7 (4.13) ◽  
pp. 99
Author(s):  
Azizi Malek ◽  
M F Sedan ◽  
A S M Harithuddin

This paper documents and presents the development of attitude control system of Hybrid Airship Unmanned Aerial Vehicle (HAU) that should be able to change its attitude condition based on the response processed from the provided input. This is accomplished by data acquisition method that retrieves data from a flight controller and processes it into the control system without looking in deep on the mathematical model of the airship. Besides that, PID controller is used in order to create a good stable response for the hybrid airship. A working hybrid airship prototype was successfully developed and built, which is five meters in length and has four propellers that is symmetrically distanced to each other. A quadcopter attitude control mechanism is adopted into the hybrid airship to allow for good hovering capability and direct pure attitude control. Outdoor flight tests have been conducted to prove its stability in responding to attitude input given to the hybrid airship attitude controller. A data monitoring software is also written to make the data observation on the behaviour of the hybrid airship response to be easier and understandable. Result demonstrates that the hybrid airship does response to pitch, roll and yaw input from the operator, albeit the lack response stability and speed which can be improved in conservative continuation of research on the airship attitude control system.  


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 863 ◽  
Author(s):  
Weiqing Huang ◽  
Mengxin Sun

A piezoelectric actuator using a lever mechanism is designed, fabricated, and tested with the aim of accomplishing long-travel precision linear driving based on the stick-slip principle. The proposed actuator mainly consists of a stator, an adjustment mechanism, a preload mechanism, a base, and a linear guide. The stator design, comprising a piezoelectric stack and a lever mechanism with a long hinge used to increase the displacement of the driving foot, is described. A simplified model of the stator is created. Its design parameters are determined by an analytical model and confirmed using the finite element method. In a series of experiments, a laser displacement sensor is employed to measure the displacement responses of the actuator under the application of different driving signals. The experiment results demonstrate that the velocity of the actuator rises from 0.05 mm/s to 1.8 mm/s with the frequency increasing from 30 Hz to 150 Hz and the voltage increasing from 30 V to 150 V. It is shown that the minimum step distance of the actuator is 0.875 μm. The proposed actuator features large stroke, a simple structure, fast response, and high resolution.


2014 ◽  
Vol 945-949 ◽  
pp. 3187-3190
Author(s):  
Hai Dong ◽  
Jin Hua Liu ◽  
Liang Yu Liu

The bullwhip effect was caused by fuzzy demand among the enterprises. In order to reduce this effect, control theory was applied to solve the inventory in supply chain. Firstly, inventory control in supply chain and the bullwhip effect was researched. Secondly, a kind of proportional integral differential (PID) controller was developed for inventory control in a three-level supply chain, and the mathematical model of the PID controller for inventory control was presented. Finally, the results show that the PID controller can evidently alleviate the bullwhip effect and inventory fluctuations under the suitable combination of control gain.


Author(s):  
M. V. Lyashenko ◽  
V. V. Shekhovtsov ◽  
P. V. Potapov ◽  
A. A. Shvedunenko

The system of special vehicle (SV) motion stabilization during moving on a straight surface is modeled on the base of dynamic equations of the mathematical model. The movement is stabilized by using a PID controller, the angular displacement of the mass is selected to ensure a given speed of movement, and the deflection angle is stabilized by controlling the engine torque.


2012 ◽  
Vol 466-467 ◽  
pp. 981-985 ◽  
Author(s):  
Xin Yun Qiu ◽  
Yuan Gao

An adaptive PID controller based on single neuron is proposed. The properties, control algorithm, parameters tuning, the control law and the application condition of the controller are studied in the paper. To satisfy the properties of the requirements of the control system in an electromotor group, such as a broad dynamic changing range, a fast response, a little overshoot and time-variable parameter, a new-type self-optimizing PID controller based on artificial neural networks is proposed and studied. It is verified that the controller has few adjustable parameters and excellent robust performance. The results of simulation and experiment prove that the controller is superior to the traditional PID controller.


2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


2020 ◽  
Vol 10 (12) ◽  
pp. 4358
Author(s):  
Xinghua Li ◽  
Jue Li ◽  
Xuan Wei ◽  
Xiaohuan Yang ◽  
Zhikun Su ◽  
...  

Freeform surface is one of the research focuses in the measurement field. A composite module is composed of a plane and rotating paraboloid. The composite module array can identify 21 geometric errors of the machine tool in a wide range, which is composed of several composite modules. Eliminating the error of the array itself is of great significance for improving measurement accuracy. For this reason, this paper proposed a noncontact method for calibrating the angle and position of the composite module array. This paper used a self-developed angle sensor to access corresponding information and established the mathematical model according to the freeform surface’s geometric characteristics to achieve calibration. In addition, the influence of array placement error on calibration was analyzed. The experimental results showed that the angle repeatability was within 0.4″ around the X-axis and within 0.3″ around the Y-axis, and the position repeatability was within 0.4 µm in the X direction and within 0.7 µm in the Y direction. The measurement comparison experiments with high-precision laser interferometer and uncalibrated array verified the correctness of the experimental results. This method provides an important reference for practical application and freeform surface array calibration, and creates conditions for the implementation of machine tool error detection.


2009 ◽  
Vol 16-19 ◽  
pp. 910-914
Author(s):  
Bei Tao Guo ◽  
Hong Yi Liu ◽  
Yang Jiang ◽  
Fei Wang ◽  
Zhong Luo

The performance of solenoid valve is directly related to the security and reliability of industrial system. This paper presents the design of the automatic test platform for solenoid valve. The architecture of the hydraulic subsystem and the control model of providing precise pressure for testing solenoid valve were built up. A self-adaptive fuzzy PID controller, which can dynamically modify the controller’s parameters by using fuzzy rules presented in this paper, was designed with considering the dynamic characteristics of hydraulic system. Simulation results show that the self-adaptive fuzzy PID controller, which compared with conventional PID controller, can obtain better dynamic performance and fast response.


2012 ◽  
Vol 220-223 ◽  
pp. 402-405
Author(s):  
Li Hong Dong

According to the nonlinearity and time-variation of the positioning control in hydraulic system, a kind of Hybrid Fuzzy-PID Controller with Coupled Rules (HFPIDCR) is proposed. In this control system, the bulk modulus is considered as a variable. The novelty of this controller is to combine the fuzzy logic and PID controllers in a switching condition. Simulation results of the HFPIDCR are compared with the results of traditional PID, Fuzzy Logic Controller (FLC), and Hybrid Fuzzy-PID Controller (HFPID). It is demonstrated that the HFPIDCR has fast response, short adjustment time, high control precision and other advantages, and it can meet the requirements of the positioning control in hydraulic system.


2014 ◽  
Vol 511-512 ◽  
pp. 637-642
Author(s):  
Yu Mei Chen ◽  
Fei Tan ◽  
Tao Fan

Through brief analysis of characteristics of conventional control, a new type of multi-mode intelligent control algorithm based on error information is put forward. The algorithm consists of proportional acceleration control for rapidity of transient response, differential deceleration control for stationarity of transient response and steady state excitation control for accuracy of steady response. The control algorithm is applied to time-delay process, compared with other algorithms. Simulation results show its good performance with MATLAB language. The algorithm has simple structure, good generality and easy adjustment.


Sign in / Sign up

Export Citation Format

Share Document