scholarly journals Optimized Survey Design for Monitoring Protocols: A Case Study of Waterfowl Abundance

Author(s):  
Alexander V Kumar ◽  
Mindy B. Rice

Nationwide monitoring programs are important tools that quantify the status and trends of natural resources providing important information for management and conservation decisions. These programs operate at large spatial scales with standardized protocols requiring wide-spread participation. However, resource limitations can reduce participation, which can then compromise the spatial replication needed for nationwide inference. The Integrated Waterbird Management and Monitoring program is an example of a national monitoring program that could benefit from a reduction in sampling effort to facilitate increased participation and ultimately broader inference. Therefore, we examined various sampling schemes to determine if it is possible to reduce the sampling effort while maintaining the statistical accuracy needed to support management. We found that instead of needing to census a National Wildlife Refuge, sampling effort could be reduced while accurately estimating waterfowl abundance to within 10% of the census count by surveying just 2/3 of all the sample units or 3/4 of the total survey area. Not only did this guideline apply to our five pilot National Wildlife Refuges, but it was also further validated by applying it to four additional National Wildlife Refuges. We hope that by applying this finding to other National Wildlife Refuges, we can increase participation in the program by reducing the logistical and financial burden of sampling.

2006 ◽  
Vol 57 (6) ◽  
pp. 635 ◽  
Author(s):  
Mark J. Kennard ◽  
Bradley J. Pusey ◽  
Bronwyn D. Harch ◽  
Elli Dore ◽  
Angela H. Arthington

As part of a wider study to develop an ecosystem-health monitoring program for wadeable streams of south-eastern Queensland, Australia, comparisons were made regarding the accuracy, precision and relative efficiency of single-pass backpack electrofishing and multiple-pass electrofishing plus supplementary seine netting to quantify fish assemblage attributes at two spatial scales (within discrete mesohabitat units and within stream reaches consisting of multiple mesohabitat units). The results demonstrate that multiple-pass electrofishing plus seine netting provide more accurate and precise estimates of fish species richness, assemblage composition and species relative abundances in comparison to single-pass electrofishing alone, and that intensive sampling of three mesohabitat units (equivalent to a riffle–run–pool sequence) is a more efficient sampling strategy to estimate reach-scale assemblage attributes than less intensive sampling over larger spatial scales. This intensive sampling protocol was sufficiently sensitive that relatively small differences in assemblage attributes (<20%) could be detected with a high statistical power (1-β > 0.95) and that relatively few stream reaches (<4) need be sampled to accurately estimate assemblage attributes close to the true population means. The merits and potential drawbacks of the intensive sampling strategy are discussed, and it is deemed to be suitable for a range of monitoring and bioassessment objectives.


Author(s):  
Ricardo Scrosati

This study investigated the synchrony of frond dynamics among patches of the intertidal seaweed Mazzaella parksii (=M. cornucopiae; Rhodophyta: Gigartinales) at local spatial scale. At Prasiola Point (Pacific coast of Canada), the mean synchrony of the seasonal changes in frond density among seven permanent, 100-cm2 quadrats was significant (mean Pearson's r=0·73, with 0·65–0·81 as 95% confidence limits) between 1993 and 1995. This indicates that predicting seasonal trends for non-monitored patches at local spatial scale can be done relatively well based on observations on a limited number of quadrats. The identification of the spatial scales at which seaweed populations covary synchronously will permit minimizing sampling effort while retaining the ability to make valid predictions for non-monitored sites.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 160 ◽  
Author(s):  
Martina Mrganić ◽  
Renata Bažok ◽  
Katarina Mikac ◽  
Hugo Benítez ◽  
Darija Lemic

Western corn rootworm (WCR) is the worst pest of maize in the United States, and since its spread through Europe, WCR is now recognized as the most serious pest affecting maize production. After the beetle’s first detection in Serbia in 1992, neighboring countries such as Croatia have established a national monitoring program. For more than two decades WCR adult population abundance and variability was monitored. With traditional density monitoring, more recent genetic monitoring, and the newest morphometric monitoring of WCR populations, Croatia possesses a great deal of knowledge about the beetle’s invasion process over time and space. Croatia’s position in Europe is unique as no other European nation has demonstrated such a detailed and complete understanding of an invasive insect. The combined use of traditional monitoring (attractant cards), which can be effectively used to predict population abundance, and modern monitoring procedures, such as population genetics and geometric morphometrics, has been effectively used to estimate inter- and intra-population variation. The combined application of traditional and modern monitoring techniques will enable more efficient control and management of WCR across Europe. This review summarizes the research on WCR in Croatia from when it was first detected in 1992 until 2018. An outline of future research needs is provided.


2008 ◽  
Vol 62 (5-6) ◽  
pp. 383-394 ◽  
Author(s):  
Sasa Jankovic ◽  
Aurelija Spiric ◽  
Tatjana Radicevic ◽  
Srdjan Stefanovic

The objective of control and systematic monitoring of residue is to secure, by the examination of a corresponding number of samples, the efficient monitoring of the residue level in tissues and organs of animals, as well as in primary products of animal origin. This creates possibilities for the timely taking of measures toward the securing of food hygiene of animal origin and the protection of public health. Residue can be a consequence of the inadequate use of medicines in veterinary medicine and pesticides in agriculture and veterinary medicine, as well as the polluting of the environment with toxic elements, dioxins, polychlorinated biphenyls, and others. Residue is being monitored in Serbia since 1972, and in 2004, national monitoring was brought to the level of EU countries through significant investments by the Ministry of Agriculture, Forestry and Water Management. This is also evident in the EU directives which permit exports of all kinds of meat and primary products of animal origin, covered by the Residue Monitoring Program. The program of systematic examinations of residue has been coordinated with the requirements of the European Union, both according to the type of examined substance, as well as according to the number of samples and the applied analytical techniques. In addition to the development of methods and the including of new harmful substances into the monitoring programme, it is also necessary to coordinate the national regulations that define the maximum permitted quantities of certain medicines and contaminants with the EU regulations, in order to protect the health of consumers as efficiently as possible, and for the country to take equal part in international trade.


2021 ◽  
Vol 4 ◽  
Author(s):  
Omneya Osman ◽  
Johan Andersson ◽  
Tomas Larsson ◽  
Mats Töpel ◽  
Alexander Eiler

National monitoring programs provide the basis for evaluating the integrity of ecosystems, their responses to disturbances, and the success of actions taken to conserve or recover biodiversity. In this study, we successfully established a national program for the invasive chytrid fungus Batrachochytrium dendrobatidis (Bd) based on dual TaqMan assays. Amphibian diversity based on metabarcoding of the mitochondrial 12S rRNA gene was also performed. Assays were optimized for sensitive detection of target species from a wide range of amphibian ponds with variable potential of inhibitions for eDNA based detection. An amphibian mock community of 5 species was used to validate the metabarcoding approach while internal standards were used in the case of the dual TaqMan assays. First sampling of over 170 ponds in Norway resulted in Bd detection in 12 environmental samples and one swab sample taken over multiple years indicating the establishment of Bd in Norway. Five amphibian species Bufo bufo, Lissotriton vulgaris, Triturus cristatus, Rana arvalis and Rana temporaria as predicted from data in long-term citizen science reporting systems were widely detected in the collected eDNA samples. Our large scale-monitoring program indicates a low risk of a Bd outbreak and amphibian decline caused by chytridiomycosis but continued monitoring is recommended in the future. These findings indicate that eDNA is an effective method to detect invasive species, and to monitor endangered amphibian species. Still, several shortcomings (such as PCR inhibitors and sample volume) were identified that need to be addressed to improve eDNA-based monitoring at the national level.


2021 ◽  
pp. 77-96
Author(s):  
Margaret E. K. Evans ◽  
Bryan A. Black ◽  
Donald A. Falk ◽  
Courtney L. Giebink ◽  
Emily L. Schultz

Biogenic time series data can be generated in a single sampling effort, offering an appealing alternative to the slow process of revisiting or recapturing individuals to measure demographic rates. Annual growth rings formed by trees and in the ear bones of fish (i.e. otoliths) are prime examples of such biogenic time series. They offer insight into not only the process of growth but also birth, death, movement, and evolution, sometimes at uniquely deep temporal and large spatial scales, well beyond 5–30 years of data collected in localised study areas. This chapter first reviews the fundamentals of how tree-ring and otolith time series data are developed and analysed (i.e. dendrochronology and sclerochronology), then surveys growth rings in other organisms, along with microstructural or microcompositional variation in growth rings, and other records of demographic processes. It highlights the answers to demographic questions revealed by these time series data, such as the influence of environmental (atmospheric or ocean) conditions, competition, and disturbances on demographic processes, and the genetic versus plastic basis of individual growth and traits that influence growth. Lastly, it considers how spatial networks of biogenic, annually resolved time series data can offer insights into the importance of macrosystem atmospheric and ocean dynamics on multispecies, trophic dynamics. The authors encourage demographers to integrate the complementary information contained in biogenic time series data into population models to better understand the drivers of vital rate variation and predict the impacts of global change.


2001 ◽  
Vol 43 (5) ◽  
pp. 175-182 ◽  
Author(s):  
D. W. Meals

Achievement of management goals for Lake Champlain (Vermont/New York, USA and Quebec, Canada) will require reduction of agricultural phosphorus loads, the dominant nonpoint source in the Basin. Cost-effective phosphorus reduction strategies need reliable treatment techniques beyond basic cropland and waste management practices. The Lake Champlain Basin Agricultural Watersheds National Monitoring Program (NMP) Project evaluates the effectiveness of livestock exclusion, streambank protection, and riparian restoration practices in reducing concentrations and loads of nutrients, sediment, and bacteria in surface waters. Treatment and control watersheds in northwestern Vermont have been monitored since 1994 according to a paired-watershed design. Monitoring consists of continuous stream discharge recording, flow-proportional sampling for total P, total Kjeldahl N, and total suspended solids, grab sampling for indicator bacterial, and land use/agricultural monitoring. Strong statistical calibration between the control and treatment watersheds has been achieved. Installation of riparian fencing, protected stream crossings, and streambank bioengineering was completed in 1997. Early post-treatment data suggest significant reduction in P concentrations and loads and in bacteria counts in the treated watershed. Monitoring is scheduled to continue through 2000.


Fractals ◽  
2015 ◽  
Vol 23 (01) ◽  
pp. 1540009 ◽  
Author(s):  
CARLOS PAREDES ◽  
CLARA GODOY ◽  
RICARDO CASTEDO

The coastal erosion along the world's coastlines is a natural process that occurs through the actions of marine and subaerial physico-chemical phenomena, waves, tides, and currents. The development of cliff erosion predictive models is limited due to the complex interactions between environmental processes and material properties over a wide range of temporal and spatial scales. As a result of this erosive action, gravity driven mass movements occur and the coastline moves inland. Like other studied earth natural and synthetically modelled phenomena characterized as self-organized critical (SOC), the recession of the cliff has a seemingly random, sporadic behavior, with a wide range of yearly recession rate values probabilistically distributed by a power-law. Usually, SOC systems are defined by a number of scaling features in the size distribution of its parameters and on its spatial and/or temporal pattern. Particularly, some previous studies of derived parameters from slope movements catalogues, have allowed detecting certain SOC features in this phenomenon, which also shares the recession of cliffs. Due to the complexity of the phenomenon and, as for other natural processes, there is no definitive model of recession of coastal cliffs. In this work, various analysis techniques have been applied to identify SOC features in the distribution and pattern to a particular case: the Holderness shoreline. This coast is a great case study to use when examining coastal processes and the structures associated with them. It is one of World's fastest eroding coastlines (2 m/yr in average, max observed 22 m/yr). Cliffs, ranging from 2 m up to 35 m in height, and made up of glacial tills, mainly compose this coast. It is this soft boulder clay that is being rapidly eroded and where coastline recession measurements have been recorded by the Cliff Erosion Monitoring Program (East Riding of Yorkshire Council, UK). The original database has been filtered by grouping contiguous sections, with similar geomorphological and dynamic features, to configure a complete and suitable catalogue of yearly recession rates (in m/yr) to analyze. Results show SOC fingerprint characteristics in the limited range scaling of the probability distribution function, in the variographic analysis and in the zero-mean Gaussian distribution of the Fourier coefficients. Therefore it cannot be neglected the possibility that Holderness cliffs behave as a SOC system. According to the discussed results, predictability possibilities of sea-cliff recession phenomena have been concluded.


2015 ◽  
Vol 11 (1) ◽  
pp. 20140930 ◽  
Author(s):  
Martin J. P. Sullivan ◽  
Stuart E. Newson ◽  
James W. Pearce-Higgins

A long-standing aim of ecologists is to understand the processes involved in regulating populations. One such mechanism is the buffer effect, where lower quality habitats are increasingly used as a species reaches higher population densities, with a resultant average reduction in fecundity and survival limiting population growth. Although the buffer effect has been demonstrated in populations of a number of species, a test of its importance in influencing population growth rates of multiple species across large spatial scales is lacking. Here, we use habitat-specific population trends for 85 bird species from long-term national monitoring data (the UK Breeding Bird Survey) to examine its generality. We find that both patterns of population change and changes in habitat preference are consistent with the predictions of the buffer effect, providing support for its widespread operation.


Sign in / Sign up

Export Citation Format

Share Document