scholarly journals Modulation of inflammatory pathways and adipogenesis by the action of gentisic acid in RAW 264.7 and 3T3-L1 cell lines

Author(s):  
Min-jae Kang ◽  
Woosuk Choi ◽  
Seung Hyun Yoo ◽  
Soo-Wan Nam ◽  
Pyung-Gyun Shin ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43696 ◽  
Author(s):  
Colin Correnti ◽  
Vera Richardson ◽  
Allyson K. Sia ◽  
Ashok D. Bandaranayake ◽  
Mario Ruiz ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2247 ◽  
Author(s):  
Giuseppina Augimeri ◽  
Pierluigi Plastina ◽  
Giulia Gionfriddo ◽  
Daniela Rovito ◽  
Cinzia Giordano ◽  
...  

A large body of evidence suggests that dietary n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), contribute to a reduced inflammatory tone thereby lowering the risk for several chronic and degenerative diseases. Different mechanisms have been proposed to explain these anti-inflammatory effects, including those involving endocannabinoids and endocannabinoid-like molecules. In this context, fatty acid amides (FAAs), conjugates of fatty acids with amines or amino acids, are an emerging class of compounds. Dopamine conjugates of DHA (N-docosahexaenoyl dopamine, DHDA) and EPA (N-eicosapentaenoyl dopamine, EPDA) have previously been shown to induce autophagy, apoptosis, and cell death in different tumor lines. Additionally, DHDA has displayed anti-inflammatory properties in vitro. Here, we tested the immune-modulatory properties of EPDA in mouse RAW 264.7 and human THP-1 macrophages stimulated with lipopolysaccharide (LPS). EPDA suppressed the production of monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in both cell lines, and nitric oxide (NO), and macrophage-inflammatory protein-3α (MIP3A) in RAW 264.7 macrophages. At a transcriptional level, EPDA attenuated cyclooxygenase-2 (COX-2) expression in both cell lines and that of MCP-1, IL-6, and interleukin-1β (IL-1β) in THP-1 macrophages. Although further research is needed to reveal whether EPDA is an endogenous metabolite, our data suggest that this EPA-derived conjugate possesses interesting immune-modulating properties.


2013 ◽  
Vol 21 (14) ◽  
pp. 4358-4364 ◽  
Author(s):  
Tyler A. Johnson ◽  
Johann Sohn ◽  
Aidan E. Ward ◽  
Tanya L. Cohen ◽  
Nicholas D. Lorig-Roach ◽  
...  

2015 ◽  
Vol 6 (8) ◽  
pp. 2834-2844 ◽  
Author(s):  
Papawee Suabjakyong ◽  
Kazuhiro Nishimura ◽  
Toshihiko Toida ◽  
Leo J. L. D. Van Griensven

Phellinus linteus and igniarius (L.) Quel. have been used in traditional Asian medicine for over two centuries against a variety of diseases.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 641-650 ◽  
Author(s):  
T Ganz ◽  
L Liu ◽  
EV Valore ◽  
A Oren

Abstract Human defensins are 29 to 30 amino acid (aa) antimicrobial peptides that are among the principal constituents of the neutrophil's azurophil granules. To determine the tissue specificity of posttranslational processing and subcellular targeting of defensins, the cDNA for a 94 aa human preprodefensin was transduced into murine cell lines (NIH 3T3 embryonic fibroblasts, AtT-20 pituitary adenoma, J774.1 and RAW 264.7 macrophages, and 32D and 32D cl3 granulocytes) using retroviral vectors. All transduced cell types expressed and to a variable extent constitutively secreted a 75 aa prodefensin formed by the removal of the amino terminal signal sequence. In AtT-20 cells, the 75 aa form accumulated intracellularly in granules and was releasable by secretagogues. Proteolytic processing to mature defensins was seen only in myeloid cells (J774.1, RAW 264.7, 32D, and 32D cl3). Newly formed mature defensin was rapidly degraded in J774.1 and RAW 264.7 macrophages, but accumulated stably in multivesicular bodies in 32D cells and in cytoplasmic granules of 32D cl3 cells. Our data suggest that the enzymatic and transport machinery required to process preprodefensin to mature defensin and to store it in cytoplasmic granules is a specialized feature of cells of granulocytic lineage.


2020 ◽  
Vol 20 (2) ◽  
pp. 245-253
Author(s):  
Aya Qasem ◽  
Violet Kasabri ◽  
Eman AbuRish ◽  
Yasser Bustanji ◽  
Yusuf Al-Hiari ◽  
...  

Objective : To assess the differential cytotoxic activity of PPIs on different human cancer cell lines; namely A549 lung cancer, CACO-2 colorectal cancer, MCF-7 breast cancer, and PANC-1 pancreatic cancer, A375 skin melanoma. Methods: In this study, the five human cancer cell lines and human non-cancerous fibroblasts were treated with increasing concentration of PPIs Omeprazole (OMP), Esomeprazole (ESOM), and Lansoprazole (LANSO) (50-300μM), over 24h, 48h, and 72h. Cell viability was determined using 3-(4,5- Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the IC50 values of PPIs were measured. The most sensitive cell line A375 was used for further investigation. The cytotoxic effects of LANSO on these cells were assessed using Annexin-V Propidium Iodide (AV-PI) flow cytometry. As of action mechanism; anti-inflammatory effects of each PPIs and PPIs-DOXO combination therapy on LPS-stimulated RAW 264.7 mouse macrophages were assessed. Results: Dose and time dependence cytotoxic activity of PPIs on human cancer cell lines was founded. Unlike DOXO; All PPIs had a selective cytotoxic effect in the normal fibroblasts. Unlike the equipotent OMP and ESOM; LANSO was the most potent drug with IC50 values at 72h of 99, 217, 272, 208, 181μM against A375, A549, CACO-2, MCF-7, and PANC-1, respectively. AV-PI flow cytometry revealed dose-dependent apoptotic effects of LANSO alone and substantially enhanced in DOXO-co-treatments. Interestingly unlike ESOM and OMP, LANSO proved more effective than indomethacin in LPS-stimulated RAW 264.7 macrophages. None of the tested compounds, as well as indomethacin, exerted any cytotoxicity against RAW 264.7 macrophages. PPIs-DOXO lacked potential synergistic combination antiinflammation therapies. Conclusion: This study provides the evidence that PPIs induce a direct and differential cytotoxic activity against human cancer cell line by the induction of the apoptosis. Moreover, PPIs increase cancer cell lines sensitivity to doxorubicin via apoptosis augmentation. Nevertheless, PPIs-DOXO lacked potential synergistic combination therapies in either antiproliferation or anti-inflammation.


2008 ◽  
Vol 83 (1) ◽  
pp. 314-328 ◽  
Author(s):  
Kathleen S. Gray ◽  
Robert D. Allen ◽  
Michael L. Farrell ◽  
J. Craig Forrest ◽  
Samuel H. Speck

ABSTRACT In the process of characterizing the requirements for expression of the essential immediate-early transcriptional activator (RTA) encoded by gene 50 of murine gammaherpesvirus 68 (MHV68), a recombinant virus was generated in which the known gene 50 promoter was deleted (G50pKO). Surprisingly, the G50pKO mutant retained the ability to replicate in permissive murine fibroblasts, albeit with slower kinetics than wild-type MHV68. 5′-rapid amplification of cDNA ends analyses of RNA prepared from G50pKO-infected fibroblasts revealed a novel upstream transcription initiation site, which was also utilized during wild-type MHV68 infection of permissive cells. Furthermore, the region upstream of the distal gene 50/RTA transcription initiation site exhibited promoter activity in both permissive NIH 3T12 fibroblasts as well as in the murine macrophage cell line RAW 264.7. In addition, in RAW 264.7 cells the activity of the distal gene 50/RTA promoter was strongly upregulated (>20-fold) by treatment of the cells with lipopolysaccharide. Reverse transcriptase PCR analyses of RNA prepared from Kaposi's sarcoma-associated herpesvirus- and Epstein-Barr virus-infected B-cell lines, following induction of virus reactivation, also revealed the presence of gene 50/RTA transcripts initiating upstream of the known transcription initiation site. The latter argues that alternative initiation of gene 50/RTA transcription is a strategy conserved among murine and human gammaherpesviruses. Infection of mice with the MHV68 G50pKO demonstrated the ability of this mutant virus to establish latency in the spleen and peritoneal exudate cells (PECs). However, the G50pKO mutant was unable to reactivate from latently infected splenocytes and also exhibited a significant reactivation defect from latently infected PECs, arguing in favor of a model where the proximal gene 50/RTA promoter plays a critical role in virus reactivation from latency, particularly from B cells. Finally, analyses of viral genome methylation in the regions upstream of the proximal and distal gene 50/RTA transcription initiation sites revealed that the distal promoter is partially methylated in vivo and heavily methylated in MHV68 latently infected B-cell lines, suggesting that DNA methylation may serve to silence the activity of this promoter during virus latency.


2015 ◽  
Vol 93 (7) ◽  
pp. 577-584 ◽  
Author(s):  
Lee J. Winchester ◽  
Sudhakar Veeranki ◽  
Srikanth Givvimani ◽  
Suresh C. Tyagi

Introduction: Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the “classically activated/destructive” (M1), and the “alternatively activated/constructive” (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. Methods: murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 μmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. Results: Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. Conclusion: Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.


Sign in / Sign up

Export Citation Format

Share Document