Application of Genomics and Proteomics in Bioremediation

Author(s):  
Amol Uttam Hivrale ◽  
Pankaj K. Pawar ◽  
Niraj R. Rane ◽  
Sanjay P. Govindwar

Bioremediation mediated by microorganisms is proving to be cost effective, ecofriendly and sustainable technology. Genome enable experimental and modeling techniques are of a great help in evaluating physiology and enhancing performance of life forms to be used for bioremediation purpose. Similarly, the application of proteomics in bioremediation research provides a global view of the protein composition of microbial cell and offers promising approach to understand the molecular mechanism of removal of toxic material from the environment. Combination of proteomics and genomics in bioremediation is an insight into global metabolic and regulatory network that can enhance the understanding of gene functions. Present chapter give a bird's eye view of genomics and proteomics and their potential utilization in bioremediation and for the clearer understanding of the cellular responses to environmental stimuli. An understanding of the growth conditions governing the expression of proteome in a specific environment is essential for developing rational strategies for successful bioremediation.

2011 ◽  
Vol 39 (1) ◽  
pp. 303-308 ◽  
Author(s):  
Naomi M. de Almeida ◽  
Wouter J. Maalcke ◽  
Jan T. Keltjens ◽  
Mike S.M. Jetten ◽  
Boran Kartal

It has been less than two decades since anammox (anaerobic ammonium oxidation) coupled to nitrite reduction has been discovered. Already, this process has been recognized as an important sink for fixed nitrogen in the natural environment and has been implemented as a cost-effective ammonium removal technology. Still, little is known about the molecular mechanism of this remarkable reaction. In this mini review, we present an insight into how ammonium and nitrite are combined to form dinitrogen gas.


2013 ◽  
Vol 85 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
MATHIAS A. CHIA ◽  
ANA T. LOMBARDI ◽  
MARIA DA GRACA G. MELAO

The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.


2015 ◽  
Vol 173 ◽  
pp. 91-99 ◽  
Author(s):  
Yi-min Ma ◽  
Xin-zhuang Zhang ◽  
Zhen-zhen Su ◽  
Na Li ◽  
Liang Cao ◽  
...  

2015 ◽  
Vol 113 ◽  
pp. 127-142 ◽  
Author(s):  
Rekha Jain ◽  
Prajakta Kulkarni ◽  
Snigdha Dhali ◽  
Srikanth Rapole ◽  
Sanjeeva Srivastava

1970 ◽  
Vol 4 ◽  
pp. 115-119 ◽  
Author(s):  
Rajan P Paudel

Invasive species adversely affects the ecology and habitat of the species existing in a particular region. They are one of the top threats to the biodiversity of life on Earth. Mikania micrantha is spreading like a wildfire in Nepal whose effect on Rhino habitat is being studied in Chitwan National Park. Various mechanical, chemical and biological methods of control for Mikania are available. It's likely to be more cost effective to prevent the spread of invasive species in the first place than to tackle the biodiversity crisis once they have become established.DOI: http://dx.doi.org/10.3126/init.v4i0.5544The Initiation Vol.4 2011 115-119


2021 ◽  
Vol 111 (1) ◽  
pp. 8-11
Author(s):  
Remco Stam ◽  
Pierre Gladieux ◽  
Boris A. Vinatzer ◽  
Erica M. Goss ◽  
Neha Potnis ◽  
...  

Population genetics has been a key discipline in phytopathology for many years. The recent rise in cost-effective, high-throughput DNA sequencing technologies, allows sequencing of dozens, if not hundreds of specimens, turning population genetics into population genomics and opening up new, exciting opportunities as described in this Focus Issue . Without the limitations of genetic markers and the availability of whole or near whole-genome data, population genomics can give new insights into the biology, evolution and adaptation, and dissemination patterns of plant-associated microbes.


2022 ◽  
Author(s):  
Katarina Bartalska ◽  
Verena Hübschmann ◽  
Medina Korkut-Demirbaş ◽  
Ryan John Abat Cubero ◽  
Alessandro Venturino ◽  
...  

Brain organoids differentiated from human induced pluripotent stem cells provide a unique opportunity to investigate the development, organization and connectivity of neurons in a complex cellular environment. However, organoids usually lack microglia, brain-resident immune cells which are both present in the early human embryonic brain and participate in neuronal circuit development. Here, we find that microglia innately develop in unguided retinal organoid differentiation between week 3 and 4 in 2.5D culture and appear later in floating, non-pigmented, 3D-cystic compartments. We enriched for cystic structures using a low-dosed BMP4 application and performed mass spectrometry, thus defining the protein composition of microglia-containing compartments. We found that cystic compartments expressed both mesenchymal and epithelial markers with microglia enriched in the mesenchymal region. Interestingly, microglia-like cells started to express the border-associated macrophage marker CD163. The preferential localization of human microglia to a mesenchymal compartment provides insight into the behavior and migration of microglia. The model will ultimately allow detailed study of these enigmatic cells and how they enter and distribute within the human brain.


2020 ◽  
Author(s):  
Wissal BEN ALI ◽  
Delphine Chaduli ◽  
David Navarro ◽  
Christian Lechat ◽  
Annick Turbé-Doan ◽  
...  

Abstract Background : Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost–effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization.Results : Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum , Stemphylium lucomagnoense and Aspergillus nidulans . Among these five isolates, one T. asperellum strain ( T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator.Conclusions : The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO 4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.


1987 ◽  
Vol 2 (3) ◽  
pp. 179-183 ◽  
Author(s):  
S. C. Laufmann

AbstractKnowledge-based System (KBS) technologies have been applied to a variety of knowledge-related tasks with varying degrees of success. Differentiating among classes of knowledge-related tasks, based on the amounts of problem-solving knowledge and case-specific data involved, can provide valuable insight into why this occurs. Based on this comparison, four classes of problems are described. One class, of data-intensive tasks, includes problem types that are difficult or impossible for humans to perform, yet may be solved in a cost-effective manner using currently accessible KBS technology. The characteristic features of problems in this class are given, together with an example of a successfully fielded knowledge-based system that solves a problem from this class.


Sign in / Sign up

Export Citation Format

Share Document