IoT-Based Management of Smart Microgrid

2022 ◽  
pp. 833-842
Author(s):  
Lipi Chhaya

The present power grid is going through a substantial and radical transformation process. Unification of existing electrical infrastructure with information and communication network is an unavoidable requirement of smart grid deployment and operation. The key characteristics of smart grid technology are full duplex communication, advanced metering infrastructure, integration of renewable and alternative energy resources, distribution automation and complete monitoring, as well as control of entire power grid. Smart grid communication infrastructure consists of varied and hierarchical communication networks. Application of smart grid can be realized in the various the facets of energy utilization. Internet of things also plays a pivotal role in smart grid infrastructure as it provides a ubiquitous communication network. This chapter describes an implementation of internet of things (IoT)-based wireless energy management system for smart microgrid communication infrastructure.

Author(s):  
Lipi Chhaya

The present power grid is going through a substantial and radical transformation process. Unification of existing electrical infrastructure with information and communication network is an unavoidable requirement of smart grid deployment and operation. The key characteristics of smart grid technology are full duplex communication, advanced metering infrastructure, integration of renewable and alternative energy resources, distribution automation and complete monitoring, as well as control of entire power grid. Smart grid communication infrastructure consists of varied and hierarchical communication networks. Application of smart grid can be realized in the various the facets of energy utilization. Internet of things also plays a pivotal role in smart grid infrastructure as it provides a ubiquitous communication network. This chapter describes an implementation of internet of things (IoT)-based wireless energy management system for smart microgrid communication infrastructure.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 567 ◽  
Author(s):  
Chatura Seneviratne ◽  
Patikiri Arachchige Don Shehan Nilmantha Wijesekara ◽  
Henry Leung

Internet of Things (IoT) can significantly enhance various aspects of today’s electric power grid infrastructures for making reliable, efficient, and safe next-generation Smart Grids (SGs). However, harsh and complex power grid infrastructures and environments reduce the accuracy of the information propagating through IoT platforms. In particularly, information is corrupted due to the measurement errors, quantization errors, and transmission errors. This leads to major system failures and instabilities in power grids. Redundant information measurements and retransmissions are traditionally used to eliminate the errors in noisy communication networks. However, these techniques consume excessive resources such as energy and channel capacity and increase network latency. Therefore, we propose a novel statistical information fusion method not only for structural chain and tree-based sensor networks, but also for unstructured bidirectional graph noisy wireless sensor networks in SG environments. We evaluate the accuracy, energy savings, fusion complexity, and latency of the proposed method by comparing the said parameters with several distributed estimation algorithms using extensive simulations proposing it for several SG applications. Results prove that the overall performance of the proposed method outperforms other fusion techniques for all considered networks. Under Smart Grid communication environments, the proposed method guarantees for best performance in all fusion accuracy, complexity and energy consumption. Analytical upper bounds for the variance of the final aggregated value at the sink node for structured networks are also derived by considering all major errors.


In order to improve the reliability and efficiency of the power grid, the smart grid uses different communication technologies. Smart grid allows bidirectional flow of electricity and information, about the state of the network and the preconditions of the clients, between the different parts of the network. Therefore, it reduces energy losses and generates and distributes electricity efficiently. Although smart grid improves the quality of network services, due to the nature of the power grid communication networks are exposed to cybersecurity threats along with the other threats. For example, electricity consumption messages sent by consumers to the utility through the wireless network can be captured, modified or reproduced by adversaries. As a consequence, the important challenges in smart grid seems to be security and privacy concerns. The smart grid update creates three main communication architectures: the first is communication between the utility companies and customers through diverse networks; that is, Local Area Networks (HAN), Construction Area Networks (BAN) and Neighboring Area Networks (NAN), we refer to these networks as client-side networks in our thesis. The second architecture is the communication through the vehicle-to-network (V2G) connection between the Electric Vehicles and the network to charge or discharge their batteries. The hindmost network is connection of the network with measurement units that extend throughout the network in order to monitor the status and send reports periodically to the main CC to estimate the status and detect erroneous data. The proposed schemes are promising solutions for the security and privacy problems of the three main communication networks in smart grid. The novelty of these proposed schemes is not only because they are robust and efficient security solutions, but also due to their lightweight communication and computing overhead, which qualifies them to be applicable in devices with limited capacity in the network. Therefore, this work is considered an important progress towards a more reliable and authentic intelligent network.


2021 ◽  
Author(s):  
Xiaobo Li ◽  
Guoli Feng ◽  
Run Ma ◽  
Lu Lu ◽  
Kaili Zhang ◽  
...  

Power-grid optical backbone communication network is a special communication network serving for power system. With the development of new internet technology, there are more and more services carried by power-grid optical backbone communication networks. It plays an important role in the protection of nodes, especially important nodes which often carry important information of the network, when the network is under heavy traffic load. Hench, to solve this problem, we propose the concept of node importance and design a node importance-based protection algorithm under heavy traffic load scenario in power-grid optical backbone communication networks. Simulation results show that the proposed node importance based protection algorithm can obviously reduce blocking probability of the important nodes and improve the performance of the entire network in terms of blocking probability.


Author(s):  
Payal Soni ◽  
J. Subhashini

India’s electrical power system grid also known as the power grid is serving us from a very long time. In this duration, there were no major developments or changes reported in the power grid system. Electrical power consumer demand is increasing drastically and the present grid system is not able to fulfil these emerging requirements. To fulfil the requirements of future power load, we need a modified system which has to be reliable, secure, intelligent and efficient. By converting the power grid into the smart grid will be a promising solution for adopting the above properties. Communication Infrastructure is a major part of the smart grid. The end-user can reduce their expenditure on electricity demand by using smart home appliance, to keep away from the rush hours and also make use of the renewable energy instead from utility, is a great example of deployment of internet of things (IoT) in grid communication. In this paper, we have provided a survey of different communication technology, applications, benefits and challenges in communication infrastructure, spatially IoT.


2021 ◽  
Vol 17 (8) ◽  
pp. 155014772110415
Author(s):  
Otisitswe Kebotogetse ◽  
Ravi Samikannu ◽  
Abid Yahya

The electricity industry has been developed through the introduction of the smart grid. This has brought about two-way communication to the grid and its components. The smart grid has managed to increase the efficiency and reliability of the traditional power grid over the years. A smart grid has a system that is used to measure and collect readings for power consumption reflection, and the system is known as the Advanced Metering Infrastructure. The advanced metering infrastructure has its components too which are the smart metre, metre control system, collector or concentrator and communication networks (wide area network, neighbourhood area network, and home area network). The communication networks in the advanced metering infrastructure have created a vulnerability to cyber-attacks over the years. The reliability of the power grid to consumers relies on the readings from the smart metre, and this brings about the need to secure the smart metre data. This article presents a review of key management methods in advanced metering infrastructure environments. The article begins with an overview of advanced metering infrastructure and then shows the relationship between the advanced metering infrastructure and the smart grid. The review then provides the security issues related to advanced metering infrastructure. Finally, the article provides existing works of key management methods in advanced metering infrastructure and future directions in securing advanced metering infrastructure and the smart grid.


2020 ◽  
Vol 12 (15) ◽  
pp. 6119
Author(s):  
Jinglei Su ◽  
Xue Chu ◽  
Seifedine Kadry ◽  
Rajkumar S

The environment and energy are two important issues in the current century. The development of modern society is closely linked to energy and the environment. Internet of Things (IoT) and Wireless Sensor Networks (WSNs) have recently been developed substantially to contribute to the fourth transformation of the power grid, namely the smart grid. WSNs have the potential to improve power grid reliability via cable replacements, fault-tolerance features, large-scale protection, versatility to deploy, and cost savings in the smart grid environment. Moreover, because of equipment noise, dust heat, electromagnetic interference, multipath effects, and fading, current WSNs are making it very difficult to provide effective communication for the smart grid (SG) environment, in which WSN work is more difficult. For the smart system 4.0 framework, a highly reliable communication network based on the WSN is critically important for the successful operation of electricity grids in the next decade. To solve the above problem, a Robust Bio-Dynamic Stimulated Routing Procedure (RDSRP) has been proposed based on the real-time behavior of a new Hybrid Bird Optimizer (HBO) model. The presented innovative research and development is a small yet important aspect of continuous critical activities that address one of our society’s major challenges and that reverse the dangerous trends of environmental destruction. This study explores some of the most recent advances in this area, including energy efficiency and energy harvesting, which are expected to have a significant impact on green topics under smart systems in the Internet of things. The experimental results show that the proposed distributed system suggestively enhances network efficiency and reduces the transmission of excess packets for wireless sensor network-based smart grid applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Dongsheng Liu ◽  
Sai Zhao ◽  
Quanzhong Li ◽  
Jiayin Qin

In this paper, we investigate the optimization of the monitoring rate for a suspicious multicast communication network with a legitimate full-duplex (FD) monitor, where the FD monitor is proactive to jam suspicious receivers and eavesdrop from the suspicious transmitter simultaneously. To effectively monitor the suspicious communication over multicast networks, we maximize the monitoring rate under the outage probability constraint of the suspicious multicast communication network and the jamming power constraint at the FD monitor. The formulated optimization problem is nonconvex, and its global optimal solution is hard to obtain. Thus, we propose a constrained concave convex procedure- (CCCP-) based iterative algorithm, which is able to achieve a local optimal solution. Simulation results demonstrate that the proposed proactive eavesdropping scheme with optimal jamming power outperforms the conventional passive eavesdropping scheme.


Sign in / Sign up

Export Citation Format

Share Document