Operational Process in Lpg and Lng Gas Ships in Maritime Transportation Logistics

Author(s):  
Ibrahim Dugenci ◽  
Ozan Hikmet Arican ◽  
Gökhan Kara ◽  
Ali Umut Unal

Liquefied petroleum gas is used as an energy source in many areas of the world. It is among the most important fuels used worldwide. Transport of this type of petroleum products between ports is carried out on a large scale. These cargoes are transported in ship types called LPG tankers. Transported LPG gas formation must be carried in liquid form. Particularly in these liquid formations, the transportation of the LPG vessels is divided into different types and it is carried under the name of Fully Refrigerated, which authors call full cooling. LPG is a highly sensitive, flammable, and explosive property, but it is also necessary to know special precautions regarding its transportation. Load operations are difficult processes for LPG tankers. The most complex of these processes is the change of load called grade change. The chapter guides LPG vessels' workers and students in the education process.

2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Robert Bozick

Abstract Background Self-rated health (SRH) is one of the most commonly used summary measures of overall health and well-being available to population scientists due to its ease of administration in large-scale surveys and to its efficacy in predicting mortality. This paper assesses the extent to which SRH is affected by its placement before or after questions about bodyweight on a survey, and whether differences in placement on the questionnaire affects SRH’s predictive validity. Methods I assessed the validity of SRH in predicting the risk of mortality by comparing outcomes of sample members who were asked to rate their health before reporting on their bodyweight (the control group) and sample members who were asked to rate their health after reporting on their bodyweight (the treatment group). Both the control and treatment group were randomly assigned via an experiment administered as a module in a nationally representative sample of adults in the USA in 2019 (N = 2523). Results The odds of reporting a more favorable appraisal of health are 30% lower for sample members who were in the treatment group when compared with the control group. Additionally, the SRH of treatment group members is significantly associated with their risk of mortality, while the SRH of control group members is not. Conclusion The findings from this study suggest that for researchers to maximize the utility of SRH, closer attention needs to be paid to the context of the survey within which it asked. SRH is highly sensitive to the questions that precede it, and this sensitivity may in turn mischaracterize the true health of the population that the survey is intending to measure.


2017 ◽  
Vol 899 ◽  
pp. 173-178 ◽  
Author(s):  
Ronydes Batista Jr. ◽  
Bruna Sene Alves Araújo ◽  
Pedro Ivo Brandão e Melo Franco ◽  
Beatriz Cristina Silvério ◽  
Sandra Cristina Danta ◽  
...  

In view of the constant search for new sources of renewable energy, the particulate agro-industrial waste reuse emerges as an advantageous alternative. However, despite the advantages of using the biomass as an energy source, there is still strong resistance as the large-scale replacement of petroleum products due to the lack of scientifically proven efficient conversion technologies. In this context, the pyrolysis is presented as one of the most widely used thermal decomposition processes. The knowledge of aspects of chemical kinetics, thermodynamics these will, heat and mass transfer, are so important, since influence the quality of the product. This paper presents a kinetic study of slow pyrolysis of coffee grounds waste from dynamic thermogravimetric experiments (TG), using different powder catalysts. The primary thermal decomposition was described by the one-step reaction model, which considers a single global reaction. The kinetic parameters were estimated using nonlinear regression and the differential evolution method. The coffee ground waste was dried at 105°C for 24 hours. The sample in nature was analyzed at different heating rates, being 10, 15, 20, 30 and 50 K/min. In the catalytic pyrolysis, about 5% (w/w) of catalyst were added to the sample, at a heating rate of 30 K/min. The results show that the one-step model does not accurately represent the data of weight loss (TG) and its derivative (DTG), but can do an estimative of the activation energy reaction, and can show the differences caused by the catalysts. Although no one can say anything about the products formed with the addition of the catalyst, it would be necessary to micro-pyrolysis analysis, we can say the influence of the catalyst in the samples, based on the data obtained in thermogravimetric tests.


Author(s):  
J. S. V. Siva Kumar ◽  
P. Mallikarjunarao

<p>The automobile industry is one of the major industries that are having its new innovations at a great pace according to the requirements of the day-to-day life. Due to the usage of conventional vehicles on a large scale which usually use petroleum products as fuel, is leading to a vast environmental effect, mainly due to the emission of greenhouse gases. So in order to reduce the ill effects of the greenhouse gas emissions great efforts are being put in   manufacturing of electrical vehicles. Among the currently available greenhouse technologies the fuel cell provides high energy density in spite of its expenses. So, in this aspect a required mechanism has to be adopted to make it energy efficient and affordable. In order to overcome the drawback of fuel cell i.e. low output voltage, the boost converters are to be used and to be more precise Non-isolated Interleaved Double Dual Boost (IDDB) converters are recommended which makes it efficient and also the reduction of overall vehicle weight can be achieved. The LQR control technique is applied in this work to make the transient response of the fuel cell powered IDDB converter for various load conditions effective. The verification of results is done with simulation techniques using MATLAB/Simulink.</p>


2021 ◽  
Author(s):  
◽  
Geoffry Laufersky

<p>Indium phosphide (InP) nanomaterials are attractive for countless technological applications due to their well-placed band gap energies. The quantum confinement of these semiconductors can give rise to size-dependent absorption and emission features throughout the entire visible spectrum. Therefore, InP materials can be employed as low-toxicity fluorophores that can be implemented in high value avenues such as biological probes, lighting applications, and lasing technologies. However, large scale development of these quantum dots (QDs) has been stymied by the lack of affordable and safe phosphorus precursors. Syntheses have largely been restricted to the use of dangerous chemicals such as tris(trimethylsilyl)phosphine ((TMS)₃P), which is costly and highly sensitive to oxygen and water. Recently, less-hazardous tris(dialkylamino)phosphines have been introduced to produce InP QDs on par with those utilizing (TMS)₃P. However, a poor understanding of the reaction mechanics has resulted in difficulties tuning and optimizing this method.  In this work, density functional theory (DFT) is used to identify the mechanism of this aminophosphine precursor conversion. This understanding is then implemented to design an improved InP QD synthesis, allowing for the production of high-quality materials outside of glovebox conditions. Time is spent understanding the impact of different precursor salts on the reaction mechanisms and discerning their subsequent effects on nanoparticle size and quality. The motivation of this work is to formulate safer and less technical indium phosphide quantum dot syntheses to foster non-specialist and industrial implementation of these materials.</p>


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 59907-59918 ◽  
Author(s):  
S. Majumder ◽  
B. Saha ◽  
S. Dey ◽  
R. Mondal ◽  
S. Kumar ◽  
...  

In the present work, well crystalline 3D micro-snowflake structured α-Fe2O3 has been successfully synthesized on a large scale via a simple hydrothermal reaction by hydrolysis of a K3Fe(CN)6 precursor.


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20349-20357 ◽  
Author(s):  
Satyendra Singh ◽  
Archana Singh ◽  
Ajendra Singh ◽  
Poonam Tandon

A new direction was explored using nanostructured zinc antimonate as a stable and highly sensitive LPG sensing material.


1996 ◽  
Vol 42 (1) ◽  
pp. 64-70 ◽  
Author(s):  
J P Richie ◽  
L Skowronski ◽  
P Abraham ◽  
Y Leutzinger

Abstract Little is known about the variability of blood glutathione (GSH) in human subjects. Thus, we wanted to develop and validate a rapid method for measuring GSH concentrations in whole blood and apply this method to ascertain the variation of GSH in a large-scale study of free-living adults. The assay was highly sensitive (detection limit &lt; 5 pmol) and precise, with an interassay variation of 2.3% and a sampling variation of 3.6%. Applying this method to screen 715 adults, we observed a threefold range of GSH concentrations, with a mean of 1.02 mmol/L and CV of 17%. GSH concentrations were 8-10% greater in smokers than in nonsmokers (P &lt; 0.001). Although we observed no sex differences for GSH, GSH/hemoglobin ratios were 8-18% greater in women &lt; 55 years old than in older subjects (P &lt; 0.05). The results presented here validate the use of this method for large-scale human studies and provide information on the variation and normal values of blood GSH in adults.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 67204-67211 ◽  
Author(s):  
Chih-Wei Chiu ◽  
Po-Hsien Lin

A novel flexible, freestanding, large-scale, and disposable SERS substrate of core/shell Ag@silicate and poly(vinyl alcohol) spherical nanohybrids, fabricated by coaxial electrospray, allows for the high-efficiency detection of adenine from DNA.


2015 ◽  
Vol 119 (46) ◽  
pp. 26091-26100 ◽  
Author(s):  
Mohammad Y. Khaywah ◽  
Safi Jradi ◽  
Guy Louarn ◽  
Yvon Lacroute ◽  
Joumana Toufaily ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document