Wastewater Treatment Using Microalgae

Author(s):  
Soumya Saswat Priyadarshi

Six different concentrations of Chlorella vulgaris microalgae culture are incorporated with raw wastewater to improve treatment efficiency in three phases. In phase one of study, 30% and 40% microalgae were incorporated with raw wastewater with 24 hrs retention period for 18 days in a batch mode and these conditions are made same for all phases. During phase two and phase three of study, 20%, 25% and 35%, 45% micro-algae concentrations used to treat raw wastewater respectively. Amongst all the six concentrations, 30% microalgae behaves most efficiently and is able to reduce 34 to 81% COD, 43 to 75% nitrate, and 36 to 99% of phosphorous. Overall ammonia nitrogen reduction varies from 80% to 99%. No attempt was made to control temperature or evaporation losses. These attempts can definitely increase the growth process of microalgae and increase the removal efficiency of nutrients in wastewater.

2014 ◽  
Vol 13 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Alireza Valipour ◽  
Seyed Masoud Taghvaei ◽  
Venkatraman Kalyan Raman ◽  
Gagik Badalians Gholikandi ◽  
Shervin Jamshidi ◽  
...  

1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


Author(s):  
Е.В. Алексеев

Широкое распространение реагентного коагулирования в технологии очистки природных и промышленных сточных вод обусловлено, с одной стороны, сложностью химического состава и фазово-дисперсного состояния их аквасистем, с другой – многофакторностью действия на них коагулянтов. Рассмотрены основные механизмы взаимодействия коагулянтов и загрязняющих веществ на примере очистки промышленных сточных вод, содержащих органические вещества (поверхностно-активные вещества и синтетические красители). Физико-химическое понятие «коагуляция» отражает только один из механизмов действия коагулянтов на загрязнители. Принятые в настоящее время технологические показатели «доза коагулянта» и «удельная доза коагулянта» также не отражают многообразие взаимодействий загрязняющих веществ с солями коагулянтов и не привязаны к результату коагулирования. Это обусловливает трудность описания совокупного действия физико-химических процессов при добавлении коагулянтов в очищаемые воды и его количественной оценки. Решение проблемы возможно введением понятия «коасорбция», определяющего многофакторность взаимодействия коагулянтов с загрязняющими веществами в процессах очистки сточных вод коагулированием, и технологического показателя «удельная коасорбция», устанавливающего количественную взаимосвязь между величинами загрязняющих веществ в исходной и очищенной воде с дозой коагулянта. Графически представлены функции удельной коасорбции в форме изотерм коасорбции для двух типов поверхностно-активных веществ и синтетических красителей. На основании результатов анализа особенностей изотерм показано, что они отражают разные механизмы взаимодействия коагулянтов и загрязняющих веществ. Использование коасорбции как технологического понятия способствует выявлению механизмов взаимодействия загрязняющих веществ с коагулянтом и созданию наилучших условий для осуществления процесса коагулирования. Функциональное описание изотерм коасорбции позволяет экстраполировать результаты пробного коагулирования в широком интервале концентраций загрязняющих веществ. Практическое значение изотерм удельной коасорбции состоит в возможности определения доз реагентов при коагулировании воды по начальному содержанию загрязняющих веществ и требуемому в очищенных водах. The widespread use of chemical coagulation in purification of natural water and industrial wastewater is due, on the one hand, to the complex chemical composition and phase-disperse state of their aqua systems, and on the other hand, to the multifactorial effect of coagulants on them. The main mechanisms of interaction between coagulants and pollutants are considered through the example of industrial wastewater treatment containing organic substances (surfactants and synthetic dyes). The physicochemical term «coagulation» reflects only one of the mechanisms of the effect of coagulants on pollutants. The currently accepted process parameters «dose of coagulant» and «specific dose of coagulant» do not reflect the variety of interactions of pollutants with coagulant salts either, and are not linked to the result of coagulation. This makes it difficult to describe the collective effect of physicochemical processes while adding coagulants to the treated water and to quantify it. The solution to the problem is possible introducing the concept of «coasorption» that determines the multifactorial origin of the interaction of coagulants and pollutants in the processes of wastewater treatment by coagulation; and the process parameter «specific coasorption» that establishes a quantitative relationship between the concentrations of pollutants in raw wastewater and effluent with a dose of coagulant. The specific coasorption functions are graphically presented in the form of coasorption isotherms for two types of surfactants and synthetic dyes. Based on the results of the analysis of the features of the isotherms, it is shown that they reflect different mechanisms of interaction between coagulants and pollutants. The use of coasorption as a technological concept provides for identifying the mechanisms of interaction of pollutants with a coagulant and establishing the best conditions for the coagulation process. The functional description of the coasorption isotherms allows extrapolating the results of trial coagulation in a wide range of pollutant concentrations. The practical importance of specific coasorption isotherms provides for determining the dosages of chemicals during coagulation of water based on the initial concentration of pollutants and effluent standard.


2003 ◽  
Vol 48 (1) ◽  
pp. 191-198 ◽  
Author(s):  
T.K. Chen ◽  
C.H. Ni ◽  
J.N. Chen ◽  
J. Lin

The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.


2019 ◽  
Vol 2019 (29) (2) ◽  
pp. 49-57
Author(s):  
Tamás Karches ◽  
Endre Salamon ◽  
Tamás Berek

1991 ◽  
Vol 23 (10-12) ◽  
pp. 1723-1732 ◽  
Author(s):  
T. Matsui ◽  
S. Kyosai ◽  
M. Takahashi

Application of biotechnology to wastewater treatment for its improvement and greater understanding was investigated in the Japanese national project named Biofocus WT as to a microorganism bank, genetic engineering application, immobilization of microorganisms, bioreactors for wastewater treatment, bioreactors for sludge treatment, SS separators for raw wastewater, biosensors and new wastewater treatment systems.


Sign in / Sign up

Export Citation Format

Share Document