Development of an Affordable Myoelectric Hand for Transradial Amputees

Author(s):  
Alok Prakash ◽  
Shiru Sharma

Upper limb amputations seriously affect a patient's life by restricting their ability in performing various tasks. Prosthetic hands are considered the primary method to reinstate the lost capabilities of such amputees. However, the presently available prosthetic devices are unable to fulfill the requirements of users due to their excessively high cost, limited functionality, heavy weight, unnatural operation, and complexity. This article presents an affordable and simple control-based myoelectric hand for transradial amputees. The hand setup mainly consists of a self-designed surface electromyography (sEMG) sensor, a microcontroller unit and a five-fingered, intrinsically actuated 3D printed hand for dexterous operations. The developed hand was implemented with proportional control scheme and was successfully tested on five amputees (with missing lower forearms) for performing grasping activities of different objects. Further, the closing time and grip force at the fingertips were also determined for the hand to compare its performance with the commercially available hands.

Author(s):  
Alok Prakash ◽  
Shiru Sharma

Upper limb amputations seriously affect a patient's life by restricting their ability in performing various tasks. Prosthetic hands are considered the primary method to reinstate the lost capabilities of such amputees. However, the presently available prosthetic devices are unable to fulfill the requirements of users due to their excessively high cost, limited functionality, heavy weight, unnatural operation, and complexity. This article presents an affordable and simple control-based myoelectric hand for transradial amputees. The hand setup mainly consists of a self-designed surface electromyography (sEMG) sensor, a microcontroller unit and a five-fingered, intrinsically actuated 3D printed hand for dexterous operations. The developed hand was implemented with proportional control scheme and was successfully tested on five amputees (with missing lower forearms) for performing grasping activities of different objects. Further, the closing time and grip force at the fingertips were also determined for the hand to compare its performance with the commercially available hands.


Author(s):  
Julio C. Díaz-Montes ◽  
Jesús Manuel Dorador-González

A review of the state of the art in prosthetic hands is presented; this review covers the most common commercial prosthesis and prototypes under development. In this analysis, prosthetic devices were divided in six systems: actuation, reduction, blocking, transmission, flexion and support. The information obtained is presented according to those systems. The most important features of each system are presented together with their relationship with the performance of the entire prosthesis. An analysis that indicates the way in which prosthesis take advantage of the capabilities of current technologies is presented. Recommendations for improving the performance of upper limb prosthesis are proposed.


Author(s):  
Juan Sebastian Cuellar ◽  
Gerwin Smit ◽  
Amir A Zadpoor ◽  
Paul Breedveld

In developing countries, prosthetic workshops are limited, difficult to reach, or even non-existent. Especially, fabrication of active, multi-articulated, and personalized hand prosthetic devices is often seen as a time-consuming and demanding process. An active prosthetic hand made through the fused deposition modelling technology and fully assembled right after the end of the 3D printing process will increase accessibility of prosthetic devices by reducing or bypassing the current manufacturing and post-processing steps. In this study, an approach for producing active hand prosthesis that could be fabricated fully assembled by fused deposition modelling technology is developed. By presenting a successful case of non-assembly 3D printing, this article defines a list of design considerations that should be followed in order to achieve fully functional non-assembly devices. Ten design considerations for additive manufacturing of non-assembly mechanisms have been proposed and a design case has been successfully addressed resulting in a fully functional prosthetic hand. The hand prosthesis can be 3D printed with an inexpensive fused deposition modelling machine and is capable of performing different types of grasping. The activation force required to start a pinch grasp, the energy required for closing, and the overall mass are significantly lower than body-powered commercial prosthetic hands. The results suggest that this non-assembly design may be a good alternative for amputees in developing countries.


Author(s):  
Goeran Fiedler ◽  
Saiph Savage ◽  
Jon Schull ◽  
Jennifer Mankoff

The emergence of 3D-printed upper limb prosthetic devices a couple of years ago, spearheaded substantially by the e-NABLE community (1, 2), has triggered a variety of reactions, ranging from euphoric press coverage predicting a new age of low-cost universally obtainable prosthetic solutions to anxious reluctance by clinicians fearing the demise of high-quality professional health care provision (3, 4). The circumstance that untrained volunteers produce e-NABLE devices on their hobby-grade 3D-printers (5) was both hailed as a revolutionary paradigm shift suited to address a host of current challenges in health care economics, and derided as inappropriate intrusion into long-standing training and certification standards of a well-regulated profession. That many of the early generation e-NABLE devices targeted young patients with partial hand amputation (6) was interpreted by proponents as finally offering this neglected population long-desired solutions, whereas skeptics felt that many of the recipients of such devices would traditionally have been deemed to have a residual functional enough to be a contra-indication for a prosthesis (7).Article PDF file:  https://jps.library.utoronto.ca/index.php/cpoj/article/view/29970/22869 How to cite: Fiedler G, Savage S, Schull J, Mankoff J. The Case For Broad-Range Outcome Assessment Across Upper Limb Device Classes. Canadian Prosthetics & Orthotics Journal. Volume1, Issue1, No4, 2018. DOI: https://doi.org/10.33137/cpoj.v1i1.29970


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chinmay P. Swami ◽  
Nicholas Lenhard ◽  
Jiyeon Kang

AbstractProsthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson’s correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.


2020 ◽  
pp. 1-7
Author(s):  
Tara Sims

BACKGROUND: The impact of paediatric upper limb difference may extend beyond the child themselves to their parents and other family members. Previous research has found that feelings of shock, numbness and loss are common amongst parents and that peer support can be a buffer against stress. OBJECTIVE: The current study aimed to explore the experiences of parents of children with limb difference, and the role of services and prosthetic devices in these experiences. METHODS: Nine parents of children with limb difference participated in either a group (n= 2) or individual (n= 7) interview. RESULTS: Analysis of the interview transcripts revealed four themes – ‘grief and guilt’, ‘prosthesis as a tool for parental adjustment’, ‘support’ and ‘fun and humour’. CONCLUSIONS: Parents may employ coping strategies to help them adjust to their child’s limb difference, including use of a prosthesis, accessing support from statutory services and peers, and use of fun and humour within the family.


2020 ◽  
Author(s):  
Alix Chadwell ◽  
Laura Diment ◽  
Encarna Micó Amigo ◽  
Dafne Zuleima Morgado Ramirez ◽  
Alexander Dickinson ◽  
...  

BackgroundUnderstanding how prostheses are used in everyday life is central to the design, provision and evaluation of prosthetic devices and associated services. This paper reviews the scientific literature on methodologies and technologies that have been used to assess the daily use of both upper- and lower-limb prostheses. It discusses the types of studies that have been undertaken, the technologies used to monitor physical activity, the benefits of monitoring daily living and the barriers to long-term monitoring.MethodsA systematic literature search was conducted in PubMed, Web of Science, Scopus, CINAHL and EMBASE of studies that monitored the activity of prosthesis-users during daily-living.Results60 lower-limb studies and 9 upper-limb studies were identified for inclusion in the review. The first studies in the lower-limb field date from the 1990s and the number has increased steadily since the early 2000s. In contrast, the studies in the upper-limb field have only begun to emerge over the past few years. The early lower-limb studies focused on the development or validation of actimeters, algorithms and/or scores for activity classification. However, most of the recent lower-limb studies used activity monitoring to compare prosthetic components. The lower-limb studies mainly used step-counts as their only measure of activity, focusing on the amount of activity, not the type and quality of movements. In comparison, the small number of upper-limb studies were fairly evenly spread between development of algorithms, comparison of everyday activity to clinical scores, and comparison of different prosthesis user populations. Most upper-limb papers reported the degree of symmetry in activity levels between the arm with the prosthesis and the intact arm.ConclusionsActivity monitoring technology used in conjunction with clinical scores and user feedback, offers significant insights into how prostheses are used and whether they meet the user’s requirements. However, the cost, limited battery-life and lack of availability in many countries mean that using sensors to understand the daily use of prostheses and the types of activity being performed has not yet become a feasible standard clinical practice. This review provides recommendations for the research and clinical communities to advance this area for the benefit of prosthesis users.


2021 ◽  
pp. 154596832110702
Author(s):  
Jake Rydland ◽  
Stephanie Spiegel ◽  
Olivia Wolfe ◽  
Bennett Alterman ◽  
John T Johnson ◽  
...  

Background Most of the current literature around amputation focuses on lower extremity amputation or engineering aspects of prosthetic devices. There is a need to more clearly understand neurobehavioral mechanisms related to upper extremity amputation and how such mechanisms might influence recovery and utilization of prostheses. Objective This scoping review aims to identify and summarize the current literature on adult traumatic upper limb amputation in regard to recovery and functional outcomes and how neuroplasticity might influence these findings. Methods We identified appropriate articles using Academic Search Complete EBSCO, OVID Medline, and Cochrane databases. The resulting articles were then exported, screened, and reviewed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) guidelines. Results Eleven (11) studies met the study criteria. Of these studies, 7 focused on sensory involvement, 3 focused on neuroplastic changes post-amputation related to functional impact, and 1 study focused on motor control and learning post-amputation. Overall, these studies revealed an incomplete understanding of the neural mechanisms involved in motor rehabilitation in the central and peripheral nervous systems, while also demonstrating the value of an individualized approach to neurorehabilitation in upper limb loss. Conclusions There is a gap in our understanding of the role of neurorehabilitation following amputation. Overall, focused rehabilitation parameters, demographic information, and clarity around central and peripheral neural mechanisms are needed in future research to address neurobehavioral mechanisms to promote functional recovery following traumatic upper extremity amputation.


Sign in / Sign up

Export Citation Format

Share Document