Magnetic Nano-Systems in Drug Delivery and Biomedical Applications

Author(s):  
Saritha R. Shetty ◽  
Archana Upadhya

Nanotechnology is that sphere of technology that involves the participation of biology, chemistry, physics, and engineering sciences. Nanoscale science defines the chemistry and physics of structures lying in the range of 1-100 nm. Among the nanosystems researched, magnetic nanosystems are highlighted due their unique ability, which enables their targeting to specific locations on application of an external magnetic field. The exhibited property of these magnetic nanosystems being super-paramagnetism, there is no retention of magnetic property on removal of the magnetic field, thus enabling a reversion of the targeting process. For effective utilization of these nanosystems, they should be reduced to nanosizes, layered with biocompatible entities, stabilized, and functionalized. In the chapter, synthesis and functionalization and stabilization are elucidated. The biomedical applications such as targeted delivery, MRI, magnetic hyperthermia, tissue engineering, gene delivery, magnetic immunotherapy, magnetic detoxification, and nanomagnetic actuation are discussed.

Author(s):  
Saritha R. Shetty ◽  
Archana Upadhya

Nanotechnology is that sphere of technology that involves the participation of biology, chemistry, physics, and engineering sciences. Nanoscale science defines the chemistry and physics of structures lying in the range of 1-100 nm. Among the nanosystems researched, magnetic nanosystems are highlighted due their unique ability, which enables their targeting to specific locations on application of an external magnetic field. The exhibited property of these magnetic nanosystems being super-paramagnetism, there is no retention of magnetic property on removal of the magnetic field, thus enabling a reversion of the targeting process. For effective utilization of these nanosystems, they should be reduced to nanosizes, layered with biocompatible entities, stabilized, and functionalized. In the chapter, synthesis and functionalization and stabilization are elucidated. The biomedical applications such as targeted delivery, MRI, magnetic hyperthermia, tissue engineering, gene delivery, magnetic immunotherapy, magnetic detoxification, and nanomagnetic actuation are discussed.


2021 ◽  
Vol 12 (5) ◽  
pp. 6699-6709

In the present study, convective diffusive mass transfer is considered, along with effects of particle drag under the influence of a magnetic field concerning drug delivery in the presence of the catheter. A concentric annular region is created by the presence of a catheter, and the effects of which on mass transfer are considered. A model on the hydrodynamics of the fluid, blood flow, and convective diffusive mass transfer of the species is presented. Here, an attempt is made to analyze a drug delivery method for delivering a drug to a specific site in the body and for this analysis, considered a channel bounded by the tissue region where the drug is targeted. The magnetic field induces pulsatile flow, which affects the mass transfer. The graphs predict that the mass transfer increases from the lumen region to the tissue region. Peclet number and magnetic parameter are the parameters that significantly affect carrying drugs towards the tissue. The results are well agreed with the physical phenomena of the problem as well as many biomedical applications.


2018 ◽  
Author(s):  
Mahendran Subramanian ◽  
Arkadiusz Miaskowski ◽  
Stuart Iain Jenkins ◽  
Jenson Lim ◽  
Jon Dobson

AbstractThe manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been demonstrated to be useful in various biomedical applications. Some techniques have evolved utilizing this non-invasive external stimulus but the scientific community widely adopts few, and there is an excellent potential for more novel methods. The primary focus of this study is on understanding the manipulation of MNPs by a time-varying static magnetic field and how this can be used, at different frequencies and displacement, to manipulate cellular function. Here we explore, using numerical modeling, the physical mechanism which underlies this kind of manipulation, and we discuss potential improvements which would enhance such manipulation with its use in biomedical applications, i.e., increasing the MNP response by improving the field parameters. From our observations and other related studies, we infer that such manipulation depends mostly on the magnetic field gradient, the magnetic susceptibility and size of the MNPs, the magnet array oscillating frequency, the viscosity of the medium surrounding MNPs, and the distance between the magnetic field source and the MNPs. Additionally, we demonstrate cytotoxicity in neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cells in vitro. This was induced by incubation with MNPs, followed by exposure to a magnetic field gradient, physically oscillating at various frequencies and displacement amplitudes. Even though this technique reliably produces MNP endocytosis and/or cytotoxicity, a better biophysical understanding is required to develop the mechanism used for this precision manipulation of MNPs, in vitro.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Cong Wang ◽  
Jungyul Park

AbstractIn this paper, we report a thin magnetic micropump embedded in contact lens, which is capable of on-demand one-directional drug delivery. The proposed micropump can be actuated by the external magnetic field whenever needed without the need of battery. A micro check valve was integrated with the micropump for one-directional drug delivery from the micropump to the post-lens tear film. With actuation of the external magnetic field, the micro check valve is opened, and on-demand drug release can be realized. On the contrary, without an external magnetic field, the micro check valve is closed, and the undesired drug diffusion can be prevented. Through the control of the strength and the frequency of the magnetic field pulse, on-demand drug release and controlled dose can be realized.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1832 ◽  
Author(s):  
Ylenia Jabalera ◽  
Francesca Oltolina ◽  
Ana Peigneux ◽  
Alberto Sola-Leyva ◽  
Maria P. Carrasco-Jiménez ◽  
...  

The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 97 ◽  
Author(s):  
S. Shams ◽  
Mohammad Ghazanfari ◽  
Carolin Schmitz-Antoniak

Magnetic-plasmonic heterodimer nanostructures synergistically present excellent magnetic and plasmonic characteristics in a unique platform as a multipurpose medium for recently invented biomedical applications, such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging, and biosensing. In this review, we briefly outline the less-known aspects of heterodimers, including electronic composition, interfacial morphology, critical properties, and present concrete examples of recent progress in synthesis and applications. With a focus on emerging features and performance of heterodimers in biomedical applications, this review provides a comprehensive perspective of novel achievements and suggests a fruitful framework for future research.


2004 ◽  
Vol 820 ◽  
Author(s):  
Ramazan Asmatulu ◽  
Richard.O. Claus ◽  
Judy S. Riffle ◽  
Michael Zalich

AbstractBiodegradable magnetic nanoparticles were synthesized using Poly(L-Lactic Acid) and magnetite nanoparticles (∼14 nm) at different dosages, and then these nanaoparticles (nanocomposites) and pure magnetic particles were targeted in external magnetic fields by changing the test parameters. The magnetic field test results showed that magnetic saturation, fluid speed, magnetic field distance and particle size were extremely effective for a magnetic guidance system that is needed for an effective drug delivery approach. Thus, it is assumed that such nanoparticles can carry drugs (chemotherapy) to be able to cure cancer tumors as well as many other diseases.


2010 ◽  
Vol 19 (3) ◽  
pp. 161-170 ◽  
Author(s):  
Xu Chao ◽  
Lili Guo ◽  
Yingyong Zhao ◽  
Kai Hua ◽  
Mingli Peng ◽  
...  

2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Fredy Munoz ◽  
Gursel Alici ◽  
Weihua Li

There is an increasing need to incorporate an actively controlled drug delivery system (DDS) into the next generation of capsule endoscopy in order to treat diseases in the gastrointestinal tract in a noninvasive way. Despite a number of attempts to magnetically actuate drug delivery mechanisms embedded in endoscopic capsules, longer operating distances and further miniaturization of on-board components are still drawbacks of such systems. In this paper, we propose an innovative magnetic system that consists of an array of magnets, which activates a DDS, based on an overly miniaturized slider–crank mechanism. We use analytical models to compare the magnetic fields generated by cylindrical and arc-shaped magnets. Our experimental results, which are in agreement with the analytical results, show that an optimally configured array of the magnets enhances the magnetic field and also the driving magnetic torque and subsequently, it imposes a high enough force on the piston of the DDS to expel a required dose of a drug out of a reservoir. We conclude that the proposed magnetic field optimization method is effective in establishing an active DDS that is designed to deliver drug profiles with accurate control of the release rate, release amount, and number of doses.


Sign in / Sign up

Export Citation Format

Share Document