Electrospun Nanofibers for Drug Delivery Applications

2022 ◽  
pp. 33-51
Author(s):  
Bishweshwar Pant ◽  
Mira Park

Nanofiber systems with various composition and biological properties have been extensively studied for various biomedical applications. The electrospinning process has been regarded as one of the versatile techniques to prepare nano to microfibers. The electrospun nanofibers are being used especially in textile industries, sensors, filters, protective clothing, energy storage materials, and biomedical applications. In the last decade, electrospun nanofibers have been highly investigated for drug delivery systems to achieve a therapeutic effect in specifically targeted sites. Various drugs or biomolecules can be easily loaded into the electrospun nanofibers by direct or indirect methods. The proper selection of polymers (or blends of various polymers), drugs, solvents to prepare the composite nanofibers with desired morphology are the tools in enhancing the bioavailability, stability, and bioactivity of drugs.

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 79
Author(s):  
Irina N. Savina ◽  
Mohamed Zoughaib ◽  
Abdulla A. Yergeshov

Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.


2020 ◽  
Vol 21 ◽  
Author(s):  
Dickson Pius Wande ◽  
Qin Cui ◽  
Shijie Chen ◽  
Cheng Xu ◽  
Hui Xiong ◽  
...  

: As a unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan) is a polymeric synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan make it play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability of promoting drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, we systematically curated current advances in nano-based delivery systems consisting of Tocophersolan with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostic.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 437
Author(s):  
Milena Álvarez-Viñas ◽  
Sandra Souto ◽  
Noelia Flórez-Fernández ◽  
Maria Dolores Torres ◽  
Isabel Bandín ◽  
...  

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1482
Author(s):  
Olga Cañadas ◽  
Andrea García-García ◽  
M. Auxiliadora Prieto ◽  
Jesús Pérez-Gil

Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial species as energy storage materials, which are used in biomedical applications, including drug delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the potential application of this nanomaterial as a basis of inhaled drug delivery systems. To that end, we assessed the possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant using dynamic light scattering, Langmuir balances, and epifluorescence microscopy. Our results demonstrate that NPs deposited onto preformed monolayers of DPPC or DPPC/POPG bind these surfactant lipids. This interaction facilitated the translocation of the nanomaterial towards the aqueous subphase, with the subsequent loss of lipid from the interface. NPs that remained at the interface associated with liquid expanded (LE)/tilted condensed (TC) phase boundaries, decreasing the size of condensed domains and promoting the intermixing of TC and LE phases at submicroscopic scale. This provided the stability necessary for attaining high surface pressures upon compression, countering the destabilization induced by lipid loss. These effects were observed only for high NP loads, suggesting a limit for the use of these NPs in pulmonary drug delivery.


2018 ◽  
Vol 6 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Po Li ◽  
Yue Yan ◽  
Binlong Chen ◽  
Pan Zhang ◽  
Siling Wang ◽  
...  

In recent years, multifunctional nanoparticles have attracted much research interest in various biomedical applications such as biosensors, diagnosis, and drug delivery systems.


2021 ◽  
pp. 113908
Author(s):  
Hadeel Kheraldine ◽  
Ousama Rachid ◽  
Abdella M Habib ◽  
Ala-Eddin Al Moustafa ◽  
Ibrahim F. Benter ◽  
...  

Author(s):  
Weibing Teng ◽  
Joseph Cappello ◽  
Xiaoyi Wu

Genetic engineering of protein-based materials provides material scientists with high levels of control in material microstructures, properties, and functions [1]. For example, multi-block protein copolymers in which individual block may possess distinct mechanical or biological properties have been biosynthesized [2, 3]. Polypeptide sequences derived from well-studied structural proteins (e.g., collagen, silk, elastin) are often used as motifs in the design and synthesis of new protein-based material, in which new functional groups may be incorporated. In this fashion, we have produced a series of silk-elastin-like proteins (SELPs) consisting of polypeptide sequences derived from silk of superior mechanical strength and elastin that is extremely durable and resilient [2, 4]. Notably, the silk-like blocks are capable of crystallizing to form virtual cross-links between elastin-mimetic sequences, which, in turn, lower the crystallinity of the silk-like blocks and thus enhance the solubility of SELPs. Consequently, SELPs may be fabricated into useful structures for biomedical applications, including drug delivery. In this study, we will characterize viscoelastic properties of SELPs, which are particularly relevant to tissue engineering applications.


2021 ◽  
Vol 04 ◽  
Author(s):  
Anna L.M.M. Toledo ◽  
Talita N. da Silva ◽  
Arianne C. dos S. Vaucher ◽  
Arthur H. V. Miranda ◽  
Gabriela C. C. Silva de Miranda ◽  
...  

Background: The demand for novel biomaterials has been exponentially rising in the last years as well as the searching for new technologies able to produce more efficient products in both drug delivery systems and regenerative medicine. Objective: The technique that can pretty well encompass the needs for novel and high-end materials with a relatively low-cost and easy operation is the electrospinning of polymer solutions. Methods: Electrospinning usually produces ultrathin fibers that can be applied in a myriad of biomedical devices including sustained delivery systems for drugs, proteins, biomolecules, hormones, etc that can be applied in a broad spectrum of applications, from transdermal patches to cancer-related drugs. Results: Electrospun fibers can be produced to mimic certain tissues of the human body, being an option to create new scaffolds for implants with several advantages. Conclusions: In this review, we aimed to encompass the use of electrospun fibers in the field of biomedical devices, more specifically in the use of electrospun nanofibers applications toward the production of drug delivery systems and scaffolds for tissue regeneration.


Author(s):  
Navneet Sharma ◽  
Sabna Kotta ◽  
Mohd Aleem ◽  
Shubham Singh ◽  
Rakesh Kumar Sharma

In the last decade, there has been a mounting concern in lipid-based formulations to deliver water-soluble drugs. Lipid-based drug delivery systems are one of the budding and promising technologies designed to tackle the poor bioavailability problems. This chapter stresses the different mechanisms of lipophilic drug absorption along with its advantages and limitations. It points out the different mechanisms of how lipid-based excipients and the different formulations interact with the absorption process. This review provides a comprehensive summary about the lipid formulation classification scheme (LFCS), a guide for the selection of appropriate formulation and commonly used excipients for lipid-based formulations, along with the important factors to be considered in formulation design and excipient selection. This review also focuses on the formulation of solid lipid-based formulations, important evaluation aspects, and commercial formulations available for the purpose.


Sign in / Sign up

Export Citation Format

Share Document