Criticalities and Advantages of the Use of Artificial Intelligence in Research

2022 ◽  
pp. 161-175
Author(s):  
Jessica Camargo Molano ◽  
Jacopo Cavalaglio Camargo Molano

In recent years, artficial intelligence, through the rapid development of machine learning and deep learning, has started to be used in different sectors, even in academic research. The objective of this study is a reflection on the possible errors that can occur when the analysis of human behavior and the development of academic research rely on artificial intelligence. To understand what errors artificial intelligence can make more easily, three cases have been analyzed: the use of the IMPACT system for the evaluation of school system in the District of Columbia Public Schools (DCPS) in Washington, the face detection system, and the “writing” of the first scientific text by artificial intelligence. In particular, this work takes into consideration the systematic errors due to the polarization of data with which the machine learning models are trained, the absence of feedback and the problem of minorities who cannot be represented through the use of big data.

2020 ◽  
Vol 5 (19) ◽  
pp. 32-35
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an analytical survey on the role of machine learning algorithms in case of intrusion detection has been presented and discussed. This paper shows the analytical aspects in the development of efficient intrusion detection system (IDS). The related study for the development of this system has been presented in terms of computational methods. The discussed methods are data mining, artificial intelligence and machine learning. It has been discussed along with the attack parameters and attack types. This paper also elaborates the impact of different attack and handling mechanism based on the previous papers.


Author(s):  
Thomas P. Trappenberg

The concluding chapter is a brief venture into a more general discussion of machine learning, how it relates to artificial intelligence (AI), and the recent impact of this on society. It starts by discussing the relations of machine learning models in relation to the brain and human intelligence. The discussion then moves to the relation between machine learning and AI. While they are now often equated, it is useful to highlight some possible sources of misconceptions. It closes with some brief thought on the impact of machine learning technology our society.


2021 ◽  
Vol 11 (3) ◽  
pp. 1323
Author(s):  
Medard Edmund Mswahili ◽  
Min-Jeong Lee ◽  
Gati Lother Martin ◽  
Junghyun Kim ◽  
Paul Kim ◽  
...  

Cocrystals are of much interest in industrial application as well as academic research, and screening of suitable coformers for active pharmaceutical ingredients is the most crucial and challenging step in cocrystal development. Recently, machine learning techniques are attracting researchers in many fields including pharmaceutical research such as quantitative structure-activity/property relationship. In this paper, we develop machine learning models to predict cocrystal formation. We extract descriptor values from simplified molecular-input line-entry system (SMILES) of compounds and compare the machine learning models by experiments with our collected data of 1476 instances. As a result, we found that artificial neural network shows great potential as it has the best accuracy, sensitivity, and F1 score. We also found that the model achieved comparable performance with about half of the descriptors chosen by feature selection algorithms. We believe that this will contribute to faster and more accurate cocrystal development.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


2020 ◽  
Vol 6 ◽  
pp. 205520762096835
Author(s):  
C Blease ◽  
C Locher ◽  
M Leon-Carlyle ◽  
M Doraiswamy

Background The potential for machine learning to disrupt the medical profession is the subject of ongoing debate within biomedical informatics. Objective This study aimed to explore psychiatrists’ opinions about the potential impact innovations in artificial intelligence and machine learning on psychiatric practice Methods In Spring 2019, we conducted a web-based survey of 791 psychiatrists from 22 countries worldwide. The survey measured opinions about the likelihood future technology would fully replace physicians in performing ten key psychiatric tasks. This study involved qualitative descriptive analysis of written responses (“comments”) to three open-ended questions in the survey. Results Comments were classified into four major categories in relation to the impact of future technology on: (1) patient-psychiatrist interactions; (2) the quality of patient medical care; (3) the profession of psychiatry; and (4) health systems. Overwhelmingly, psychiatrists were skeptical that technology could replace human empathy. Many predicted that ‘man and machine’ would increasingly collaborate in undertaking clinical decisions, with mixed opinions about the benefits and harms of such an arrangement. Participants were optimistic that technology might improve efficiencies and access to care, and reduce costs. Ethical and regulatory considerations received limited attention. Conclusions This study presents timely information on psychiatrists’ views about the scope of artificial intelligence and machine learning on psychiatric practice. Psychiatrists expressed divergent views about the value and impact of future technology with worrying omissions about practice guidelines, and ethical and regulatory issues.


2021 ◽  
Vol 27 (6) ◽  
pp. 101-106
Author(s):  
М. Falaleev ◽  
◽  
N. Sitdikova ◽  
Е. Nechay ◽  
◽  
...  

The development of digital technologies, coupled with progress in the development of self-learning programs based on AI (Artificial Intelligence), has obvious advantages in improving the effectiveness of information impact on people around the world. During the 2010s, researchers have documented trends in the use of artificial intelligence for the construction and distribution of media content to indirectly manipulate political discourse at the national and global levels. Special interest in the context of this issue is how the rapid development of AI technologies affects political communication. The object of consideration within the framework of this article is the deepfake technology. Based on this, as a subject, the authors define deepfake as a phenomenon of modern political communication. Accordingly, the purpose of the study is to describe and predict the impact of deepfake technology on political communication at the global and national levels. The paper presents the definition of deepfake, assesses its characteristics depending on the methods and purposes of its distribution, and analyzes the prospects for using this tool to influence political discourse in modern Russia. To study the subject field of the research, methods of systematizing theoretical data, classification, analysis of a set of factors and forecasting have been applied. The practical significance of the work is presented by the authors’ definition and typology of the phenomenon of deepfake and describes its significance as a factor of political communication on the example of a particular country. The results of the work will be useful for researchers studying the problems of digitalization of the media space and modern means of disinformation in politics, both at the local and global levels


2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 330-330
Author(s):  
Teja Ganta ◽  
Stephanie Lehrman ◽  
Rachel Pappalardo ◽  
Madalene Crow ◽  
Meagan Will ◽  
...  

330 Background: Machine learning models are well-positioned to transform cancer care delivery by providing oncologists with more accurate or accessible information to augment clinical decisions. Many machine learning projects, however, focus on model accuracy without considering the impact of using the model in real-world settings and rarely carry forward to clinical implementation. We present a human-centered systems engineering approach to address clinical problems with workflow interventions utilizing machine learning algorithms. Methods: We aimed to develop a mortality predictive tool, using a Random Forest algorithm, to identify oncology patients at high risk of death within 30 days to move advance care planning (ACP) discussions earlier in the illness trajectory. First, a project sponsor defined the clinical need and requirements of an intervention. The data scientists developed the predictive algorithm using data available in the electronic health record (EHR). A multidisciplinary workgroup was assembled including oncology physicians, advanced practice providers, nurses, social workers, chaplain, clinical informaticists, and data scientists. Meeting bi-monthly, the group utilized human-centered design (HCD) methods to understand clinical workflows and identify points of intervention. The workgroup completed a workflow redesign workshop, a 90-minute facilitated group discussion, to integrate the model in a future state workflow. An EHR (Epic) analyst built the user interface to support the intervention per the group’s requirements. The workflow was piloted in thoracic oncology and bone marrow transplant with plans to scale to other cancer clinics. Results: Our predictive model performance on test data was acceptable (sensitivity 75%, specificity 75%, F-1 score 0.71, AUC 0.82). The workgroup identified a “quality of life coordinator” who: reviews an EHR report of patients scheduled in the upcoming 7 days who have a high risk of 30-day mortality; works with the oncology team to determine ACP clinical appropriateness; documents the need for ACP; identifies potential referrals to supportive oncology, social work, or chaplain; and coordinates the oncology appointment. The oncologist receives a reminder on the day of the patient’s scheduled visit. Conclusions: This workgroup is a viable approach that can be replicated at institutions to address clinical needs and realize the full potential of machine learning models in healthcare. The next steps for this project are to address end-user feedback from the pilot, expand the intervention to other cancer disease groups, and track clinical metrics.


2021 ◽  
Vol 12 (4) ◽  
pp. 43
Author(s):  
Srikrishna Chintalapati

From retail banking to corporate banking, from property and casualty to personal lines, and from portfolio management to trade processing, the next wave of digital disruption in financial services has been unleashed by the concepts and applications of Artificial Intelligence (AI) and Machine Learning (ML). Together, AI and ML are undoubtedly creating one of the largest technological transformations the world has ever witnessed. Within the advanced streams of research in AI and ML, human intelligence blended with the cognitive reasoning of machines is finally out of the labs and into real-time applications. The Financial Services sector is one of the early adopters of this revolution and arguably much ahead of its leverage compared to other sectors. Built on the conceptual foundations of Innovation diffusion, and a contemporary perspective of enterprise customer life-cycle journey across the AI-value chain defined by McKinsey Global Institute (2017), the current study attempts to highlight the features and use-cases of early-adopters of this transformation. With the theoretical underpinning of technology adoption lifecycle, this paper is an earnest attempt to comment on how AI and ML have been significantly transforming the Financial Services market space from the lens of a domain practitioner. The findings of this study would be of particular relevance to the subject matter experts, Industry analysts, academicians, and researchers focussed on studying the impact of AI and ML in the financial services industry.


2021 ◽  
Vol 28 (1) ◽  
pp. e100439
Author(s):  
Lukasz S Wylezinski ◽  
Coleman R Harris ◽  
Cody N Heiser ◽  
Jamieson D Gray ◽  
Charles F Spurlock

IntroductionThe SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the USA, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities.MethodsWe combined county-level COVID-19 testing data, COVID-19 vaccination rates and SDOH information in Tennessee. Between February and May 2021, we trained machine learning models on a semimonthly basis using these datasets to predict COVID-19 incidence in Tennessee counties. We then analyzed SDOH data features at each time point to rank the impact of each feature on model performance.ResultsOur results indicate that COVID-19 vaccination rates play a crucial role in determining future COVID-19 disease risk. Beginning in mid-March 2021, higher vaccination rates significantly correlated with lower COVID-19 case growth predictions. Further, as the relative importance of COVID-19 vaccination data features grew, demographic SDOH features such as age, race and ethnicity decreased while the impact of socioeconomic and environmental factors, including access to healthcare and transportation, increased.ConclusionIncorporating a data framework to track the evolving patterns of community-level SDOH risk factors could provide policy-makers with additional data resources to improve health equity and resilience to future public health emergencies.


Sign in / Sign up

Export Citation Format

Share Document