Microstructure of Environmental Barrier Mullite and Erbium Silicate Coatings on SiC-Fiber Bonded Composites

Author(s):  
Zuhair S. Khan ◽  
Tatsuya Hinoki ◽  
Akira Kohyama
2006 ◽  
Vol 317-318 ◽  
pp. 549-552 ◽  
Author(s):  
H. Nakayama ◽  
Kohei Morishita ◽  
Shojiro Ochiai ◽  
Takahiro Sekigawa ◽  
K. Aoyama ◽  
...  

SiC fiber reinforced SiC matrix (SiC/SiC) composites are one of the most promising materials for high temperature structural applications such as power generation and propulsion systems. SiC/SiC composites are, however, susceptible to accelerated attacks in water vapor environments through oxidation and volatilization reaction. For protection from such attacks, Environmental Barrier Coatings (EBCs) are indispensable. We have investigated some oxides and rare-earth silicates as topcoat candidate materials for EBCs. Topcoat materials must be stable in the high-water-vapor pressurized environments at high temperatures. Also, it is important that the thermal expansion coefficient of topcoat materials is similar to that of the SiC/SiC composites. In this study, first, zirconium oxides, lutetium silicates and yttrium silicates were selected as topcoat candidate materials. They were exposed in a water-containing atmosphere at a temperature of 1673 K for 100 h under a total pressure 0.96 MPa. Mass changes, structure of crystals and microstructures were investigated after the exposure experiments in order to evaluate the thermal stability of these materials. After their estimation, lutetium silicates were considered to be promising for topcoat materials. Then, lutetium silicates were coated as the topcoat of an EBC system on SiC/SiC composites, and their fracture toughness and microstructures were investigated after exposure to an oxidizing atmosphere. The evaluation results of the topcoat materials are reported in this paper.


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
Warren J. Moberly ◽  
Daniel B. Miracle ◽  
S. Krishnamurthy

Titanium-aluminum alloy metal matrix composites (MMC) and Ti-Al intermetallic matrix composites (IMC), reinforced with continuous SCS6 SiC fibers are leading candidates for high temperature aerospace applications such as the National Aerospace Plane (NASP). The nature of deformation at fiber / matrix interfaces is characterized in this ongoing research. One major concern is the mismatch in coefficient of thermal expansion (CTE) between the Ti-based matrix and the SiC fiber. This can lead to thermal stresses upon cooling down from the temperature incurred during hot isostatic pressing (HIP), which are sufficient to cause yielding in the matrix, and/or lead to fatigue from the thermal cycling that will be incurred during application, A second concern is the load transfer, from fiber to matrix, that is required if/when fiber fracture occurs. In both cases the stresses in the matrix are most severe at the interlace.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


2011 ◽  
Vol 25 (12) ◽  
pp. 1281-1285 ◽  
Author(s):  
Rong-Jun ZHANG ◽  
Yan-Qing YANG ◽  
Chen WANG ◽  
Wen-Tao SHEN ◽  
Xian LUO

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 889
Author(s):  
Jie Zhong ◽  
Dongling Yang ◽  
Shuangquan Guo ◽  
Xiaofeng Zhang ◽  
Xinghua Liang ◽  
...  

SiC fiber-reinforced SiC ceramic matrix composites (SiCf/SiC CMCs) are being increasingly used in the hot sections of gas turbines because of their light weight and mechanical properties at high temperatures. The objective of this investigation was the development of a thermal/environmental barrier coating (T/EBC) composite coating system consisting of an environmental barrier coating (EBC) to protect the ceramic matrix composites from chemical attack and a thermal barrier coating (TBC) that insulates and reduces the ceramic matrix composites substrate temperature for increased lifetime. In this paper, a plasma spray-physical vapor deposition (PS-PVD) method was used to prepare multilayer Si–HfO2/Yb2Si2O7/Yb2SiO5/Gd2Zr2O7 composite coatings on the surface of SiCf/SiC ceramic matrix composites. The purpose of this study is to develop a coating with resistance to high temperatures and chemical attack. Different process parameters are adopted, and their influence on the microstructure characteristics of the coating is discussed. The water quenching thermal cycle of the coating at high temperatures was tested. The results show that the structure of the thermal/environmental barrier composite coating changes after water quenching because point defects and dislocations appear in the Gd2Zr2O7 and Yb2SiO5 coatings. A phase transition was found to occur in the Yb2SiO5 and Yb2Si2O7 coatings. The failure mechanism of the T/EBC composite coating is mainly spalling when the top layer penetrates cracks and cracking occurs in the interface of the Si–HfO2/Yb2Si2O7 coating.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Markus Wolf ◽  
Hideki Kakisawa ◽  
Fabia Süß ◽  
Daniel Emil Mack ◽  
Robert Vaßen

In the high temperature combustion atmosphere inside of aircraft turbines, the currently used ceramic matrix composites require a protective environmental barrier coating (EBC) to mitigate corrosion of the turbine parts. Besides thermomechanical and thermochemical properties like matching thermal expansion coefficient (CTE) and a high resistance against corrosive media, mechanical properties like a high adhesion strength are also necessary for a long lifetime of the EBC. In the present work, the adhesion between an air plasma sprayed silicon bond coat and a vacuum plasma sprayed ytterbium disilicate topcoat was aimed to be enhanced by a laser surface structuring of the Si bond coat. An increase in interface toughness was assumed, since the introduction of structures would lead to an increased mechanical interlocking at the rougher bond coat interface. The interface toughness was measured by a new testing method, which allows the testing of specific interfaces. The results demonstrate a clear increase of the toughness from an original bond coat/topcoat interface (8.6 J/m2) compared to a laser structured interface (14.7 J/m2). Observations in the crack propagation indicates that the laser structuring may have led to a strengthening of the upper bond coat area by sintering. Furthermore, in addition to cohesive failure components, adhesive components can also be observed, which could have influenced the determined toughness.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1323
Author(s):  
Chenyang Hou ◽  
Shouyin Zhang ◽  
Zhijian Ma ◽  
Baiping Lu ◽  
Zhenjun Wang

Ti/Ti–Al and SiCf-reinforced Ti/Ti–Al laminated composites were fabricated through vacuum hot-pressure using pure Ti foils, pure Al foils and SiC fibers as raw materials. The effects of SiC fiber and a laminated structure on the properties of Ti–Al laminated composites were studied. A novel method of fiber weaving was implemented to arrange the SiC fibers, which can guarantee the equal spacing of the fibers without introducing other elements. Results showed that with a higher exerted pressure, a more compact structure with fewer Kirkendall holes can be obtained in SiCf-reinforced Ti/Ti–Al laminated composites. The tensile strength along the longitudinal direction of fibers was about 400 ± 10 MPa, which was 60% higher compared with the fabricated Ti/Ti–Al laminated composites with the same volume fraction (60%) of the Ti layer. An in situ tensile test was adopted to observe the deformation behavior and fracture mechanisms of the SiCf-reinforced Ti/Ti–Al laminated composites. Results showed that microcracks first occurred in the Ti–Al intermetallic layer.


Sign in / Sign up

Export Citation Format

Share Document