scholarly journals Investigation of the Responses of Asphalt Pavement Structure Considering Load - Poisson's Ratio Relation

2012 ◽  
Vol 5 ◽  
pp. 230-237
Author(s):  
Lei Zhang ◽  
Yi Qiu Tan ◽  
Yang Jian Ou ◽  
Xiang Bing Gong

Abstract. Poisson’s ratio is one of the important parameters that can be used to reflect the deformation characteristics of solid materials. To further understand the mechanical behaviors of materials and improve the accuracy of the finite element simulation results, the Poisson’s ratio must be defined accurately. In this paper, DIC technology is employed to investigate the Poisson’s ratios of asphalt mixtures under the different gradation and different compaction conditions. It is found that the Poisson’s ratios of different asphalt mixture are quite different and the number of compaction had a greater influence on Poisson’s ratio. It also showed that Poisson’s ratio of asphalt mixture was not a constant under the 25°C temperature condition, but varied with load. The experiment data suggested that the curve of the load - Poisson’s ratio could be divided into three sections through the observation of the graph and it also could be used to investigate the properties of asphalt mixtures deformation resistance. General-purpose finite element software is used to simulate the different contact pressure and Poisson’s ratio under dynamic loading condition, in order to find the response of asphalt pavement structure based on the relationship between load and Poisson’s ratio. It was found that the relationship of load - Poisson’s ratio significantly affected the response of asphalt pavement. It meant that the relationship of load - Poisson’s ratio should be considered when designing the asphalt pavement to improve the asphalt pavement service life.

2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


2012 ◽  
Vol 256-259 ◽  
pp. 1807-1812 ◽  
Author(s):  
Qing Yi Xiao ◽  
Hong Jun Cui ◽  
Ning Li Li ◽  
Cai Li Zhang

Ice layer on pavement surface was a serious problem for highway traffic safety. Crumbed rubber asphalt mixture was an effective way to drive ice layer away from surface. Through wheel test asphalt mixture specimen with ice layer at negtive temperature, the paper studied ice breaking performance of asphalt mixtures containing different amount crumbed rubber. Pendulumlike friction test BPN after wheel test was taken as an performance index of crumber rubber asphalt breaking ice. Results shown that the quantity of crumbed rubber and the performance of ice breaking had good linear relationship and more rubber content had better slide resistance recover speed at same wheel arround number.Through numerial model of pavement covered ice based on FEM method, the paper had analyzed the relationship between elastic modulus of crumbed rubber pavement and ice stress-strain on pavement, and put forward the mechanism of ice breaking.


Author(s):  
Shawn P. Reese ◽  
Steve A. Maas ◽  
Heath A. Henninger ◽  
Jeffrey A. Weiss

During tensile testing along the predominant collagen fiber direction, ligament and tendon tissue exhibit large Poisson’s ratios ranging from 1.3 in capsular ligament to 2.98 in flexor tendon [1][2]. Although the microstructure of these tissues (especially fiber crimp) has been characterized, the relationship between microstructure and Poisson’s ratio is relatively unexplored. There has been debate regarding the exact nature of the characteristic crimp within tendon fibers, however the two views most present in the literature are that of planar crimp and helical crimp. The aim of this study was to perform a finite element analysis on prototypical models of fibril bundles for both forms of crimp under tensile loading conditions. It was hypothesized that planar crimp alone would be insufficient for generating large Poisson’s ratios, and that some other microstructure (such as a helix) would be required.


2011 ◽  
Vol 287-290 ◽  
pp. 509-513
Author(s):  
Zuo Fen Luo

The finite element software was applied to simulate the splitting test of asphalt mixture, and the computational formula of resilient modulus was fitted out. On the basis of the measured resilient deformation from the splitting test, the computation process of splitting resilient modulus of the asphalt mixture was illustrated in detail. The splitting resilient moduli of the asphalt mixtures at three temperatures were analyzed. Finally the resilient moduli of the asphalt mixture measured through three kinds of tests were compared with each other. The results are of significance in the determination of resilient modulus of the asphalt mixture and parameter selection in specifications for asphalt pavement design.


2021 ◽  
Vol 294 ◽  
pp. 123564
Author(s):  
Quang Tuan Nguyen ◽  
Hervé Di Benedetto ◽  
Quang Phuc Nguyen ◽  
Thi Thanh Nhan Hoang ◽  
Van Phu Bui

2020 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
Francesco Baino ◽  
Elisa Fiume

AbstractPorosity is known to play a pivotal role in dictating the functional properties of biomedical scaffolds, with special reference to mechanical performance. While compressive strength is relatively easy to be experimentally assessed even for brittle ceramic and glass foams, elastic properties are much more difficult to be reliably estimated. Therefore, describing and, hence, predicting the relationship between porosity and elastic properties based only on the constitutive parameters of the solid material is still a challenge. In this work, we quantitatively compare the predictive capability of a set of different models in describing, over a wide range of porosity, the elastic modulus (7 models), shear modulus (3 models) and Poisson’s ratio (7 models) of bioactive silicate glass-derived scaffolds produced by foam replication. For these types of biomedical materials, the porosity dependence of elastic and shear moduli follows a second-order power-law approximation, whereas the relationship between porosity and Poisson’s ratio is well fitted by a linear equation.


2021 ◽  
Author(s):  
Xikui Ma ◽  
Jian Liu ◽  
Yingcai Fan ◽  
Weifeng Li ◽  
Jifan Hu ◽  
...  

Two-dimensional (2D) auxetic materials with exceptional negative Poisson’s ratios (NPR) are drawing increasing interest due to the potentials in medicine, fasteners, tougher composites and many other applications. Improving the auxetic...


2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


2011 ◽  
Vol 105-107 ◽  
pp. 810-817 ◽  
Author(s):  
Rong Hui Zhang ◽  
Jia Liu ◽  
Jian Chao Huang ◽  
Yi Fu

To solve the high-temperature rutting problem of asphalt pavement, the old rubber of the tire rubber and plastic of general polyethylene waste composite modified asphalt mixture is proposed. The plastic and rubber compound particle was made by the rubber through efficient desulfurization additives, pre-swelling, twin-screw extrusion equipment. The particles mixed with the asphalt mixtures specimen preparation and the dynamic stability experiments, composite beam fatigue experiments, flexural tensile strength and modulus experiments and anti-reflective pavement cracks and other mechanical experiments are performed. The comparative data obtained by the rubber and plastic composited modified asphalt mixtures and SBS asphalt mixtures prove that the rubber and plastic composited modified asphalt mixtures have excellent rutting resistance and fatigue resistance.


Sign in / Sign up

Export Citation Format

Share Document