Effects of Aging Treatment on Performance of Explosive Welded Beryllium-Bronze/Carbon-Steel Composite Plate

2011 ◽  
Vol 117-119 ◽  
pp. 862-865 ◽  
Author(s):  
Guo Shang Zhang ◽  
Shu Zeng Hou ◽  
Shi Zhong Wei ◽  
Ji Wen Li ◽  
Liu Jie Xu

This paper dealt with how the aging time and temperature affected the hardness of beryllium bronze layer in the explosive welded beryllium-bronze/carbon-steel composite plate. The properties of shearing, bonding, cold bending and microhardness were studied in term of the composite plate, including the aging and nonaging. The optimum aging treatment process of the composite plate is aging temperature at 320°C for 3 hours. And the results show that: aging treatment has no obvious effects on the shear strength but sharply decreases bond strength of the composite plate. And aging treatment to a certain extent reduce the cold bending prroperty. After aging treatment, the microhardness value and distribution of carbon steel was no obvious change, and the microhardness of beryllium bronze sharply raised and smoothly distributed.

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yunzan Ma ◽  
Weijiang Yang ◽  
Qi Liu ◽  
Kejia Liu ◽  
Kun Chen

In this paper, the interface microstructure, elements’ diffusion features at the interface, and bonding properties in nickel-based alloy/carbon steel clad composite prepared by vacuum hot-roll bonding were investigated, comprehensively. The influence of element distribution on the interface bonding strength was revealed as well. The results showed that there was a 13 μm thick diffusion layer at the interface of nickel-based alloy/carbon steel composite plate, which was beneficial to a strong bond between nickel-based alloy and carbon steel, as well as the stable transition of mechanical properties in the thickness direction. Kirkendall voids and fine-grained structure (the grain size is about 41.5 nm) were observable by peeling off the nickel-based alloy cladding, which greatly promoted element diffusion and enhanced the interfacial bonding strength of the nickel-based alloy/carbon steel composite plate. The diffusion coefficient of Ni at the interface was about 2 orders of magnitude larger than that of nanocrystalline Fe. The shear strength reached up to 453 MPa, which was much higher than the minimum of 140 MPa defined in ASTM A-264 specifications. Furthermore, in the shear test, the fracture occurred on the X52 carbon steel side at the contact rather than at the composite plate interface.


2012 ◽  
Vol 189 ◽  
pp. 134-138
Author(s):  
Jian Qiang Wang ◽  
Shao Kang Guan ◽  
Hao Zhu

The effects of aging treatment on the damping capacities of ZA84-xSb alloys were studied. The results show that in the aging treatment process, because of following mainly reasons: (1) the dissolution of the ternary phases, (2) the increase of grain interfaces, (3) the increases of dislocation density, and (4) the micro deformations of matrix interfaces and the second phases, the damping capacity of ZA84-xSb magnesium alloys did not be reduced. On the contrary, whether at the low temperatures or high temperatures, its damping capacity is higher than as-cast alloy, which is of great significance for the application of ZA84-xSb magnesium alloys.


2021 ◽  
Vol 2 (1) ◽  
pp. 110-120
Author(s):  
Maisa Abdelmoula ◽  
Hajer Ben Hlima ◽  
Frédéric Michalet ◽  
Gérard Bourduche ◽  
Jean-Yves Chavant ◽  
...  

Commercial adhesives present a high bond strength and water resistance, but they are considered non-healthier products. Chitosan can be considered as an interesting biosourced and biodegradable alternative, despite its low water resistance. Here, its wood bonding implementation and its tensile shear strength in dry and wet conditions were investigated depending on its structural characteristics. Firstly, the spread rate, open assembly time, drying pressure, drying temperature, and drying time have been determined for two chitosans of European pine double lap specimens. An adhesive solution spread rate of 1000 g·m−2, an open assembly time of 10 min, and a pressure temperature of 55 °C for 105 min led to a bond strength of 2.82 MPa. Secondly, a comparison between a high molecular weight/low deacetylation degree chitosan and a lower molecular weight/higher deacetylation degree chitosan was conducted. Tests were conducted with beech simple lap specimens in accordance with the implementation conditions and the conditioning treatments in wet and dry environments required for thermoplastic wood adhesive standards used in non-structural applications (EN 204 and EN 205). The results clearly revealed the dependence of adhesive properties and water resistance on the structural features of chitosans (molecular weight and deacetylation degree), explaining the heterogeneity of results published notably in this field.


2013 ◽  
Vol 706-708 ◽  
pp. 716-719
Author(s):  
Jian Chu ◽  
Gang Wang

This paper mainly introduced to the PLC as the core of stainless steel composite plate electric control part of the design. The system uses the converter +PLC+ man-machine interface, as the major part of roll welding machine control, because of the use of the PLC, so that the system can improve the automatic level, electrical components is reduced, reduce failure rate, improve the reliability of equipment operation. Based on the current control and speed control, so that the welding quality and welding speed has been greatly improved. In the article, mainly from the production process, and the control system hardware and software design, and the control scheme to introduce several aspects.


2005 ◽  
Vol 32 (2) ◽  
pp. 314-328 ◽  
Author(s):  
Young K Ju ◽  
Do-Hyun Kim ◽  
Sang-Dae Kim

The number of high-rise buildings has greatly increased in Korea, and storey height is a significant component of tall residential buildings due to the limited city area. To reduce storey height, the wide beam has been adopted in some projects in Seoul such as Trump World, Galleria Palace, and Richencia. The joints between the wide beam and the core wall were too narrow to place the reinforcement, however. This paper investigates a newly developed structural system called the innovative, technical, economical, and convenient hybrid system (iTECH system). The iTECH system has an asymmetric steel assembly with web openings, where the top plate is welded on top of inverted structural "tees" whose cut is referred to as a "honeycomb" type. Both sides of the web and the slab are filled with cast-in-place concrete. The shear capacity was experimentally evaluated and verified, with parameters determined by factors that shared the shear strength of the iTECH beam. The steel web, inner concrete panel, and outer concrete panel contributed to the shear strength of the iTECH beam. The shear stirrup did not contribute much to the shear strength, however, and therefore a design equation using the steel web and inner concrete panel was suggested.Key words: composite beam, shear capacity, monotonic test, high-rise building.


Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Frank Stöckel ◽  
Johannes Konnerth ◽  
Wolfgang Kantner ◽  
Johann Moser ◽  
Wolfgang Gindl

Abstract The tensile shear strength of veneer lap joints was characterised. The joints were produced with an Automated Bonding Evaluation System (ABES) using urea-formaldehyde (UF) as well as melamine-urea-formaldehyde (MUF) adhesive formulated for particleboard production. At a fixed heating temperature of 110°C, a systematic increase in bond strength was observed for both adhesives with increasing cure time. The absolute bond strength was significantly higher for MUF compared to UF. Nanoindentation experiments with the same specimens used for ABES revealed a very hard, stiff and brittle character of the UF resin, whereas the MUF proved significantly less hard and stiff, and less brit-tle. Wood cell walls in contact with adhesive, i.e., where adhesive penetration into the cell wall was assumed, showed significantly altered mechanical properties. Such cell walls were harder, stiffer and more brittle than unaffected reference cell walls. These effects were slightly more pronounced for UF than for MUF. Comparing UF and MUF, the micro-mechanical properties of cured adhesive and interphase cell walls confirm earlier observations that tougher adhesives can lead to higher macroscopic bond strength. In strong contrast to that, no obvious correlation was found between micromechanical properties and the strong cure time dependence of macroscopic bond strength.


2021 ◽  
Vol 882 ◽  
pp. 21-27
Author(s):  
Seyed Veghar Seyedmohammadi ◽  
Amin Radi ◽  
Guney Guven Yapici

In the present work, the effects of artificial aging treatment on the transformation temperatures and hardness of Cu-Al-Mn shape memory alloy have been investigated. The aging processes have been performed on the one-time re-melted and 90% rolled samples. Differential scanning calorimetry reveals that reverse transformation is present for the re-melted sample which is aged at 400°C. However, in 90% rolled condition, this transformation takes place at 200°C and 300°C. Hardness examination shows that the aged specimens possess higher values in hardness in comparison to un-aged samples at all studied temperatures. Although, the peak-aged condition was demonstrated at 300°C for the re-melted sample, the rolled sample displayed increased hardness levels up to 500°C. Based on the DSC measurements and microstructural observations, it can be asserted that the thermo-mechanical processing including rolling plus aging at 300°C provides favorable transformation characteristics for shape memory behavior.


Sign in / Sign up

Export Citation Format

Share Document